Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(2x^{2}-12x+25\right)
Factor out 2. Polynomial 2x^{2}-12x+25 is not factored since it does not have any rational roots.
4x^{2}-24x+50=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 4\times 50}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 4\times 50}}{2\times 4}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-16\times 50}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-24\right)±\sqrt{576-800}}{2\times 4}
Multiply -16 times 50.
x=\frac{-\left(-24\right)±\sqrt{-224}}{2\times 4}
Add 576 to -800.
4x^{2}-24x+50
Since the square root of a negative number is not defined in the real field, there are no solutions. Quadratic polynomial cannot be factored.