Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-12x+4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\times 4}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\times 4}}{2\times 4}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-16\times 4}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-12\right)±\sqrt{144-64}}{2\times 4}
Multiply -16 times 4.
x=\frac{-\left(-12\right)±\sqrt{80}}{2\times 4}
Add 144 to -64.
x=\frac{-\left(-12\right)±4\sqrt{5}}{2\times 4}
Take the square root of 80.
x=\frac{12±4\sqrt{5}}{2\times 4}
The opposite of -12 is 12.
x=\frac{12±4\sqrt{5}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{5}+12}{8}
Now solve the equation x=\frac{12±4\sqrt{5}}{8} when ± is plus. Add 12 to 4\sqrt{5}.
x=\frac{\sqrt{5}+3}{2}
Divide 12+4\sqrt{5} by 8.
x=\frac{12-4\sqrt{5}}{8}
Now solve the equation x=\frac{12±4\sqrt{5}}{8} when ± is minus. Subtract 4\sqrt{5} from 12.
x=\frac{3-\sqrt{5}}{2}
Divide 12-4\sqrt{5} by 8.
4x^{2}-12x+4=4\left(x-\frac{\sqrt{5}+3}{2}\right)\left(x-\frac{3-\sqrt{5}}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3+\sqrt{5}}{2} for x_{1} and \frac{3-\sqrt{5}}{2} for x_{2}.