Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}=5+12
Add 12 to both sides.
4x^{2}=17
Add 5 and 12 to get 17.
x^{2}=\frac{17}{4}
Divide both sides by 4.
x=\frac{\sqrt{17}}{2} x=-\frac{\sqrt{17}}{2}
Take the square root of both sides of the equation.
4x^{2}-12-5=0
Subtract 5 from both sides.
4x^{2}-17=0
Subtract 5 from -12 to get -17.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-17\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 0 for b, and -17 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\left(-17\right)}}{2\times 4}
Square 0.
x=\frac{0±\sqrt{-16\left(-17\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{0±\sqrt{272}}{2\times 4}
Multiply -16 times -17.
x=\frac{0±4\sqrt{17}}{2\times 4}
Take the square root of 272.
x=\frac{0±4\sqrt{17}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{17}}{2}
Now solve the equation x=\frac{0±4\sqrt{17}}{8} when ± is plus.
x=-\frac{\sqrt{17}}{2}
Now solve the equation x=\frac{0±4\sqrt{17}}{8} when ± is minus.
x=\frac{\sqrt{17}}{2} x=-\frac{\sqrt{17}}{2}
The equation is now solved.