Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-115x-375=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-115\right)±\sqrt{\left(-115\right)^{2}-4\times 4\left(-375\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-115\right)±\sqrt{13225-4\times 4\left(-375\right)}}{2\times 4}
Square -115.
x=\frac{-\left(-115\right)±\sqrt{13225-16\left(-375\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-115\right)±\sqrt{13225+6000}}{2\times 4}
Multiply -16 times -375.
x=\frac{-\left(-115\right)±\sqrt{19225}}{2\times 4}
Add 13225 to 6000.
x=\frac{-\left(-115\right)±5\sqrt{769}}{2\times 4}
Take the square root of 19225.
x=\frac{115±5\sqrt{769}}{2\times 4}
The opposite of -115 is 115.
x=\frac{115±5\sqrt{769}}{8}
Multiply 2 times 4.
x=\frac{5\sqrt{769}+115}{8}
Now solve the equation x=\frac{115±5\sqrt{769}}{8} when ± is plus. Add 115 to 5\sqrt{769}.
x=\frac{115-5\sqrt{769}}{8}
Now solve the equation x=\frac{115±5\sqrt{769}}{8} when ± is minus. Subtract 5\sqrt{769} from 115.
4x^{2}-115x-375=4\left(x-\frac{5\sqrt{769}+115}{8}\right)\left(x-\frac{115-5\sqrt{769}}{8}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{115+5\sqrt{769}}{8} for x_{1} and \frac{115-5\sqrt{769}}{8} for x_{2}.