Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-10x+16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 4\times 16}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -10 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 4\times 16}}{2\times 4}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-16\times 16}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-10\right)±\sqrt{100-256}}{2\times 4}
Multiply -16 times 16.
x=\frac{-\left(-10\right)±\sqrt{-156}}{2\times 4}
Add 100 to -256.
x=\frac{-\left(-10\right)±2\sqrt{39}i}{2\times 4}
Take the square root of -156.
x=\frac{10±2\sqrt{39}i}{2\times 4}
The opposite of -10 is 10.
x=\frac{10±2\sqrt{39}i}{8}
Multiply 2 times 4.
x=\frac{10+2\sqrt{39}i}{8}
Now solve the equation x=\frac{10±2\sqrt{39}i}{8} when ± is plus. Add 10 to 2i\sqrt{39}.
x=\frac{5+\sqrt{39}i}{4}
Divide 10+2i\sqrt{39} by 8.
x=\frac{-2\sqrt{39}i+10}{8}
Now solve the equation x=\frac{10±2\sqrt{39}i}{8} when ± is minus. Subtract 2i\sqrt{39} from 10.
x=\frac{-\sqrt{39}i+5}{4}
Divide 10-2i\sqrt{39} by 8.
x=\frac{5+\sqrt{39}i}{4} x=\frac{-\sqrt{39}i+5}{4}
The equation is now solved.
4x^{2}-10x+16=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}-10x+16-16=-16
Subtract 16 from both sides of the equation.
4x^{2}-10x=-16
Subtracting 16 from itself leaves 0.
\frac{4x^{2}-10x}{4}=-\frac{16}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{10}{4}\right)x=-\frac{16}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{5}{2}x=-\frac{16}{4}
Reduce the fraction \frac{-10}{4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{5}{2}x=-4
Divide -16 by 4.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=-4+\left(-\frac{5}{4}\right)^{2}
Divide -\frac{5}{2}, the coefficient of the x term, by 2 to get -\frac{5}{4}. Then add the square of -\frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{2}x+\frac{25}{16}=-4+\frac{25}{16}
Square -\frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{2}x+\frac{25}{16}=-\frac{39}{16}
Add -4 to \frac{25}{16}.
\left(x-\frac{5}{4}\right)^{2}=-\frac{39}{16}
Factor x^{2}-\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{-\frac{39}{16}}
Take the square root of both sides of the equation.
x-\frac{5}{4}=\frac{\sqrt{39}i}{4} x-\frac{5}{4}=-\frac{\sqrt{39}i}{4}
Simplify.
x=\frac{5+\sqrt{39}i}{4} x=\frac{-\sqrt{39}i+5}{4}
Add \frac{5}{4} to both sides of the equation.