Factor
\frac{\left(3x-2\right)\left(8x-3\right)}{6}
Evaluate
4x^{2}-\frac{25x}{6}+1
Graph
Share
Copied to clipboard
\frac{24x^{2}-25x+6}{6}
Factor out \frac{1}{6}.
a+b=-25 ab=24\times 6=144
Consider 24x^{2}-25x+6. Factor the expression by grouping. First, the expression needs to be rewritten as 24x^{2}+ax+bx+6. To find a and b, set up a system to be solved.
-1,-144 -2,-72 -3,-48 -4,-36 -6,-24 -8,-18 -9,-16 -12,-12
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 144.
-1-144=-145 -2-72=-74 -3-48=-51 -4-36=-40 -6-24=-30 -8-18=-26 -9-16=-25 -12-12=-24
Calculate the sum for each pair.
a=-16 b=-9
The solution is the pair that gives sum -25.
\left(24x^{2}-16x\right)+\left(-9x+6\right)
Rewrite 24x^{2}-25x+6 as \left(24x^{2}-16x\right)+\left(-9x+6\right).
8x\left(3x-2\right)-3\left(3x-2\right)
Factor out 8x in the first and -3 in the second group.
\left(3x-2\right)\left(8x-3\right)
Factor out common term 3x-2 by using distributive property.
\frac{\left(3x-2\right)\left(8x-3\right)}{6}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}