Solve for x
x=240
x=80
Graph
Share
Copied to clipboard
4x^{2}=16\left(14400-240x+x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(120-x\right)^{2}.
4x^{2}=230400-3840x+16x^{2}
Use the distributive property to multiply 16 by 14400-240x+x^{2}.
4x^{2}-230400=-3840x+16x^{2}
Subtract 230400 from both sides.
4x^{2}-230400+3840x=16x^{2}
Add 3840x to both sides.
4x^{2}-230400+3840x-16x^{2}=0
Subtract 16x^{2} from both sides.
-12x^{2}-230400+3840x=0
Combine 4x^{2} and -16x^{2} to get -12x^{2}.
-12x^{2}+3840x-230400=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3840±\sqrt{3840^{2}-4\left(-12\right)\left(-230400\right)}}{2\left(-12\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -12 for a, 3840 for b, and -230400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3840±\sqrt{14745600-4\left(-12\right)\left(-230400\right)}}{2\left(-12\right)}
Square 3840.
x=\frac{-3840±\sqrt{14745600+48\left(-230400\right)}}{2\left(-12\right)}
Multiply -4 times -12.
x=\frac{-3840±\sqrt{14745600-11059200}}{2\left(-12\right)}
Multiply 48 times -230400.
x=\frac{-3840±\sqrt{3686400}}{2\left(-12\right)}
Add 14745600 to -11059200.
x=\frac{-3840±1920}{2\left(-12\right)}
Take the square root of 3686400.
x=\frac{-3840±1920}{-24}
Multiply 2 times -12.
x=-\frac{1920}{-24}
Now solve the equation x=\frac{-3840±1920}{-24} when ± is plus. Add -3840 to 1920.
x=80
Divide -1920 by -24.
x=-\frac{5760}{-24}
Now solve the equation x=\frac{-3840±1920}{-24} when ± is minus. Subtract 1920 from -3840.
x=240
Divide -5760 by -24.
x=80 x=240
The equation is now solved.
4x^{2}=16\left(14400-240x+x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(120-x\right)^{2}.
4x^{2}=230400-3840x+16x^{2}
Use the distributive property to multiply 16 by 14400-240x+x^{2}.
4x^{2}+3840x=230400+16x^{2}
Add 3840x to both sides.
4x^{2}+3840x-16x^{2}=230400
Subtract 16x^{2} from both sides.
-12x^{2}+3840x=230400
Combine 4x^{2} and -16x^{2} to get -12x^{2}.
\frac{-12x^{2}+3840x}{-12}=\frac{230400}{-12}
Divide both sides by -12.
x^{2}+\frac{3840}{-12}x=\frac{230400}{-12}
Dividing by -12 undoes the multiplication by -12.
x^{2}-320x=\frac{230400}{-12}
Divide 3840 by -12.
x^{2}-320x=-19200
Divide 230400 by -12.
x^{2}-320x+\left(-160\right)^{2}=-19200+\left(-160\right)^{2}
Divide -320, the coefficient of the x term, by 2 to get -160. Then add the square of -160 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-320x+25600=-19200+25600
Square -160.
x^{2}-320x+25600=6400
Add -19200 to 25600.
\left(x-160\right)^{2}=6400
Factor x^{2}-320x+25600. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-160\right)^{2}}=\sqrt{6400}
Take the square root of both sides of the equation.
x-160=80 x-160=-80
Simplify.
x=240 x=80
Add 160 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}