Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+4x=-17
Add 4x to both sides.
4x^{2}+4x+17=0
Add 17 to both sides.
x=\frac{-4±\sqrt{4^{2}-4\times 4\times 17}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 4 for b, and 17 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 4\times 17}}{2\times 4}
Square 4.
x=\frac{-4±\sqrt{16-16\times 17}}{2\times 4}
Multiply -4 times 4.
x=\frac{-4±\sqrt{16-272}}{2\times 4}
Multiply -16 times 17.
x=\frac{-4±\sqrt{-256}}{2\times 4}
Add 16 to -272.
x=\frac{-4±16i}{2\times 4}
Take the square root of -256.
x=\frac{-4±16i}{8}
Multiply 2 times 4.
x=\frac{-4+16i}{8}
Now solve the equation x=\frac{-4±16i}{8} when ± is plus. Add -4 to 16i.
x=-\frac{1}{2}+2i
Divide -4+16i by 8.
x=\frac{-4-16i}{8}
Now solve the equation x=\frac{-4±16i}{8} when ± is minus. Subtract 16i from -4.
x=-\frac{1}{2}-2i
Divide -4-16i by 8.
x=-\frac{1}{2}+2i x=-\frac{1}{2}-2i
The equation is now solved.
4x^{2}+4x=-17
Add 4x to both sides.
\frac{4x^{2}+4x}{4}=-\frac{17}{4}
Divide both sides by 4.
x^{2}+\frac{4}{4}x=-\frac{17}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+x=-\frac{17}{4}
Divide 4 by 4.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-\frac{17}{4}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=\frac{-17+1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=-4
Add -\frac{17}{4} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{2}\right)^{2}=-4
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-4}
Take the square root of both sides of the equation.
x+\frac{1}{2}=2i x+\frac{1}{2}=-2i
Simplify.
x=-\frac{1}{2}+2i x=-\frac{1}{2}-2i
Subtract \frac{1}{2} from both sides of the equation.