Solve for x
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
x=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
a+b=4 ab=4\left(-3\right)=-12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx-3. To find a and b, set up a system to be solved.
-1,12 -2,6 -3,4
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -12.
-1+12=11 -2+6=4 -3+4=1
Calculate the sum for each pair.
a=-2 b=6
The solution is the pair that gives sum 4.
\left(4x^{2}-2x\right)+\left(6x-3\right)
Rewrite 4x^{2}+4x-3 as \left(4x^{2}-2x\right)+\left(6x-3\right).
2x\left(2x-1\right)+3\left(2x-1\right)
Factor out 2x in the first and 3 in the second group.
\left(2x-1\right)\left(2x+3\right)
Factor out common term 2x-1 by using distributive property.
x=\frac{1}{2} x=-\frac{3}{2}
To find equation solutions, solve 2x-1=0 and 2x+3=0.
4x^{2}+4x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-3\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 4 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 4\left(-3\right)}}{2\times 4}
Square 4.
x=\frac{-4±\sqrt{16-16\left(-3\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-4±\sqrt{16+48}}{2\times 4}
Multiply -16 times -3.
x=\frac{-4±\sqrt{64}}{2\times 4}
Add 16 to 48.
x=\frac{-4±8}{2\times 4}
Take the square root of 64.
x=\frac{-4±8}{8}
Multiply 2 times 4.
x=\frac{4}{8}
Now solve the equation x=\frac{-4±8}{8} when ± is plus. Add -4 to 8.
x=\frac{1}{2}
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
x=-\frac{12}{8}
Now solve the equation x=\frac{-4±8}{8} when ± is minus. Subtract 8 from -4.
x=-\frac{3}{2}
Reduce the fraction \frac{-12}{8} to lowest terms by extracting and canceling out 4.
x=\frac{1}{2} x=-\frac{3}{2}
The equation is now solved.
4x^{2}+4x-3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}+4x-3-\left(-3\right)=-\left(-3\right)
Add 3 to both sides of the equation.
4x^{2}+4x=-\left(-3\right)
Subtracting -3 from itself leaves 0.
4x^{2}+4x=3
Subtract -3 from 0.
\frac{4x^{2}+4x}{4}=\frac{3}{4}
Divide both sides by 4.
x^{2}+\frac{4}{4}x=\frac{3}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+x=\frac{3}{4}
Divide 4 by 4.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{3}{4}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=\frac{3+1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=1
Add \frac{3}{4} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{2}\right)^{2}=1
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x+\frac{1}{2}=1 x+\frac{1}{2}=-1
Simplify.
x=\frac{1}{2} x=-\frac{3}{2}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}