Solve for x (complex solution)
x=\frac{-5+\sqrt{103}i}{16}\approx -0.3125+0.634305723i
x=\frac{-\sqrt{103}i-5}{16}\approx -0.3125-0.634305723i
Graph
Share
Copied to clipboard
4x^{2}+4x-3-\frac{3}{2}x=-5
Subtract \frac{3}{2}x from both sides.
4x^{2}+\frac{5}{2}x-3=-5
Combine 4x and -\frac{3}{2}x to get \frac{5}{2}x.
4x^{2}+\frac{5}{2}x-3+5=0
Add 5 to both sides.
4x^{2}+\frac{5}{2}x+2=0
Add -3 and 5 to get 2.
x=\frac{-\frac{5}{2}±\sqrt{\left(\frac{5}{2}\right)^{2}-4\times 4\times 2}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, \frac{5}{2} for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{5}{2}±\sqrt{\frac{25}{4}-4\times 4\times 2}}{2\times 4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{5}{2}±\sqrt{\frac{25}{4}-16\times 2}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\frac{5}{2}±\sqrt{\frac{25}{4}-32}}{2\times 4}
Multiply -16 times 2.
x=\frac{-\frac{5}{2}±\sqrt{-\frac{103}{4}}}{2\times 4}
Add \frac{25}{4} to -32.
x=\frac{-\frac{5}{2}±\frac{\sqrt{103}i}{2}}{2\times 4}
Take the square root of -\frac{103}{4}.
x=\frac{-\frac{5}{2}±\frac{\sqrt{103}i}{2}}{8}
Multiply 2 times 4.
x=\frac{-5+\sqrt{103}i}{2\times 8}
Now solve the equation x=\frac{-\frac{5}{2}±\frac{\sqrt{103}i}{2}}{8} when ± is plus. Add -\frac{5}{2} to \frac{i\sqrt{103}}{2}.
x=\frac{-5+\sqrt{103}i}{16}
Divide \frac{-5+i\sqrt{103}}{2} by 8.
x=\frac{-\sqrt{103}i-5}{2\times 8}
Now solve the equation x=\frac{-\frac{5}{2}±\frac{\sqrt{103}i}{2}}{8} when ± is minus. Subtract \frac{i\sqrt{103}}{2} from -\frac{5}{2}.
x=\frac{-\sqrt{103}i-5}{16}
Divide \frac{-5-i\sqrt{103}}{2} by 8.
x=\frac{-5+\sqrt{103}i}{16} x=\frac{-\sqrt{103}i-5}{16}
The equation is now solved.
4x^{2}+4x-3-\frac{3}{2}x=-5
Subtract \frac{3}{2}x from both sides.
4x^{2}+\frac{5}{2}x-3=-5
Combine 4x and -\frac{3}{2}x to get \frac{5}{2}x.
4x^{2}+\frac{5}{2}x=-5+3
Add 3 to both sides.
4x^{2}+\frac{5}{2}x=-2
Add -5 and 3 to get -2.
\frac{4x^{2}+\frac{5}{2}x}{4}=-\frac{2}{4}
Divide both sides by 4.
x^{2}+\frac{\frac{5}{2}}{4}x=-\frac{2}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{5}{8}x=-\frac{2}{4}
Divide \frac{5}{2} by 4.
x^{2}+\frac{5}{8}x=-\frac{1}{2}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{5}{8}x+\left(\frac{5}{16}\right)^{2}=-\frac{1}{2}+\left(\frac{5}{16}\right)^{2}
Divide \frac{5}{8}, the coefficient of the x term, by 2 to get \frac{5}{16}. Then add the square of \frac{5}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{8}x+\frac{25}{256}=-\frac{1}{2}+\frac{25}{256}
Square \frac{5}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{8}x+\frac{25}{256}=-\frac{103}{256}
Add -\frac{1}{2} to \frac{25}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{16}\right)^{2}=-\frac{103}{256}
Factor x^{2}+\frac{5}{8}x+\frac{25}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{16}\right)^{2}}=\sqrt{-\frac{103}{256}}
Take the square root of both sides of the equation.
x+\frac{5}{16}=\frac{\sqrt{103}i}{16} x+\frac{5}{16}=-\frac{\sqrt{103}i}{16}
Simplify.
x=\frac{-5+\sqrt{103}i}{16} x=\frac{-\sqrt{103}i-5}{16}
Subtract \frac{5}{16} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}