Solve for x
x = \frac{\sqrt{21} + 3}{2} \approx 3.791287847
x=\frac{3-\sqrt{21}}{2}\approx -0.791287847
Graph
Share
Copied to clipboard
2x^{2}+4x+2-10x-8=0
Combine 4x^{2} and -2x^{2} to get 2x^{2}.
2x^{2}-6x+2-8=0
Combine 4x and -10x to get -6x.
2x^{2}-6x-6=0
Subtract 8 from 2 to get -6.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 2\left(-6\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -6 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 2\left(-6\right)}}{2\times 2}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-8\left(-6\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-6\right)±\sqrt{36+48}}{2\times 2}
Multiply -8 times -6.
x=\frac{-\left(-6\right)±\sqrt{84}}{2\times 2}
Add 36 to 48.
x=\frac{-\left(-6\right)±2\sqrt{21}}{2\times 2}
Take the square root of 84.
x=\frac{6±2\sqrt{21}}{2\times 2}
The opposite of -6 is 6.
x=\frac{6±2\sqrt{21}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{21}+6}{4}
Now solve the equation x=\frac{6±2\sqrt{21}}{4} when ± is plus. Add 6 to 2\sqrt{21}.
x=\frac{\sqrt{21}+3}{2}
Divide 6+2\sqrt{21} by 4.
x=\frac{6-2\sqrt{21}}{4}
Now solve the equation x=\frac{6±2\sqrt{21}}{4} when ± is minus. Subtract 2\sqrt{21} from 6.
x=\frac{3-\sqrt{21}}{2}
Divide 6-2\sqrt{21} by 4.
x=\frac{\sqrt{21}+3}{2} x=\frac{3-\sqrt{21}}{2}
The equation is now solved.
2x^{2}+4x+2-10x-8=0
Combine 4x^{2} and -2x^{2} to get 2x^{2}.
2x^{2}-6x+2-8=0
Combine 4x and -10x to get -6x.
2x^{2}-6x-6=0
Subtract 8 from 2 to get -6.
2x^{2}-6x=6
Add 6 to both sides. Anything plus zero gives itself.
\frac{2x^{2}-6x}{2}=\frac{6}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{6}{2}\right)x=\frac{6}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-3x=\frac{6}{2}
Divide -6 by 2.
x^{2}-3x=3
Divide 6 by 2.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=3+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=3+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{21}{4}
Add 3 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{21}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{21}}{2} x-\frac{3}{2}=-\frac{\sqrt{21}}{2}
Simplify.
x=\frac{\sqrt{21}+3}{2} x=\frac{3-\sqrt{21}}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}