Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+4x+1-49=0
Subtract 49 from both sides.
4x^{2}+4x-48=0
Subtract 49 from 1 to get -48.
x^{2}+x-12=0
Divide both sides by 4.
a+b=1 ab=1\left(-12\right)=-12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-12. To find a and b, set up a system to be solved.
-1,12 -2,6 -3,4
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -12.
-1+12=11 -2+6=4 -3+4=1
Calculate the sum for each pair.
a=-3 b=4
The solution is the pair that gives sum 1.
\left(x^{2}-3x\right)+\left(4x-12\right)
Rewrite x^{2}+x-12 as \left(x^{2}-3x\right)+\left(4x-12\right).
x\left(x-3\right)+4\left(x-3\right)
Factor out x in the first and 4 in the second group.
\left(x-3\right)\left(x+4\right)
Factor out common term x-3 by using distributive property.
x=3 x=-4
To find equation solutions, solve x-3=0 and x+4=0.
4x^{2}+4x+1=49
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4x^{2}+4x+1-49=49-49
Subtract 49 from both sides of the equation.
4x^{2}+4x+1-49=0
Subtracting 49 from itself leaves 0.
4x^{2}+4x-48=0
Subtract 49 from 1.
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-48\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 4 for b, and -48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 4\left(-48\right)}}{2\times 4}
Square 4.
x=\frac{-4±\sqrt{16-16\left(-48\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-4±\sqrt{16+768}}{2\times 4}
Multiply -16 times -48.
x=\frac{-4±\sqrt{784}}{2\times 4}
Add 16 to 768.
x=\frac{-4±28}{2\times 4}
Take the square root of 784.
x=\frac{-4±28}{8}
Multiply 2 times 4.
x=\frac{24}{8}
Now solve the equation x=\frac{-4±28}{8} when ± is plus. Add -4 to 28.
x=3
Divide 24 by 8.
x=-\frac{32}{8}
Now solve the equation x=\frac{-4±28}{8} when ± is minus. Subtract 28 from -4.
x=-4
Divide -32 by 8.
x=3 x=-4
The equation is now solved.
4x^{2}+4x+1=49
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}+4x+1-1=49-1
Subtract 1 from both sides of the equation.
4x^{2}+4x=49-1
Subtracting 1 from itself leaves 0.
4x^{2}+4x=48
Subtract 1 from 49.
\frac{4x^{2}+4x}{4}=\frac{48}{4}
Divide both sides by 4.
x^{2}+\frac{4}{4}x=\frac{48}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+x=\frac{48}{4}
Divide 4 by 4.
x^{2}+x=12
Divide 48 by 4.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=12+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=12+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{49}{4}
Add 12 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{49}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{7}{2} x+\frac{1}{2}=-\frac{7}{2}
Simplify.
x=3 x=-4
Subtract \frac{1}{2} from both sides of the equation.