Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+3x-5=6
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4x^{2}+3x-5-6=6-6
Subtract 6 from both sides of the equation.
4x^{2}+3x-5-6=0
Subtracting 6 from itself leaves 0.
4x^{2}+3x-11=0
Subtract 6 from -5.
x=\frac{-3±\sqrt{3^{2}-4\times 4\left(-11\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 3 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 4\left(-11\right)}}{2\times 4}
Square 3.
x=\frac{-3±\sqrt{9-16\left(-11\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-3±\sqrt{9+176}}{2\times 4}
Multiply -16 times -11.
x=\frac{-3±\sqrt{185}}{2\times 4}
Add 9 to 176.
x=\frac{-3±\sqrt{185}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{185}-3}{8}
Now solve the equation x=\frac{-3±\sqrt{185}}{8} when ± is plus. Add -3 to \sqrt{185}.
x=\frac{-\sqrt{185}-3}{8}
Now solve the equation x=\frac{-3±\sqrt{185}}{8} when ± is minus. Subtract \sqrt{185} from -3.
x=\frac{\sqrt{185}-3}{8} x=\frac{-\sqrt{185}-3}{8}
The equation is now solved.
4x^{2}+3x-5=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}+3x-5-\left(-5\right)=6-\left(-5\right)
Add 5 to both sides of the equation.
4x^{2}+3x=6-\left(-5\right)
Subtracting -5 from itself leaves 0.
4x^{2}+3x=11
Subtract -5 from 6.
\frac{4x^{2}+3x}{4}=\frac{11}{4}
Divide both sides by 4.
x^{2}+\frac{3}{4}x=\frac{11}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{3}{4}x+\left(\frac{3}{8}\right)^{2}=\frac{11}{4}+\left(\frac{3}{8}\right)^{2}
Divide \frac{3}{4}, the coefficient of the x term, by 2 to get \frac{3}{8}. Then add the square of \frac{3}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{4}x+\frac{9}{64}=\frac{11}{4}+\frac{9}{64}
Square \frac{3}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{4}x+\frac{9}{64}=\frac{185}{64}
Add \frac{11}{4} to \frac{9}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{8}\right)^{2}=\frac{185}{64}
Factor x^{2}+\frac{3}{4}x+\frac{9}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{8}\right)^{2}}=\sqrt{\frac{185}{64}}
Take the square root of both sides of the equation.
x+\frac{3}{8}=\frac{\sqrt{185}}{8} x+\frac{3}{8}=-\frac{\sqrt{185}}{8}
Simplify.
x=\frac{\sqrt{185}-3}{8} x=\frac{-\sqrt{185}-3}{8}
Subtract \frac{3}{8} from both sides of the equation.