Solve for x
x=-4
x=-\frac{1}{4}=-0.25
Graph
Share
Copied to clipboard
a+b=17 ab=4\times 4=16
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx+4. To find a and b, set up a system to be solved.
1,16 2,8 4,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 16.
1+16=17 2+8=10 4+4=8
Calculate the sum for each pair.
a=1 b=16
The solution is the pair that gives sum 17.
\left(4x^{2}+x\right)+\left(16x+4\right)
Rewrite 4x^{2}+17x+4 as \left(4x^{2}+x\right)+\left(16x+4\right).
x\left(4x+1\right)+4\left(4x+1\right)
Factor out x in the first and 4 in the second group.
\left(4x+1\right)\left(x+4\right)
Factor out common term 4x+1 by using distributive property.
x=-\frac{1}{4} x=-4
To find equation solutions, solve 4x+1=0 and x+4=0.
4x^{2}+17x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-17±\sqrt{17^{2}-4\times 4\times 4}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 17 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-17±\sqrt{289-4\times 4\times 4}}{2\times 4}
Square 17.
x=\frac{-17±\sqrt{289-16\times 4}}{2\times 4}
Multiply -4 times 4.
x=\frac{-17±\sqrt{289-64}}{2\times 4}
Multiply -16 times 4.
x=\frac{-17±\sqrt{225}}{2\times 4}
Add 289 to -64.
x=\frac{-17±15}{2\times 4}
Take the square root of 225.
x=\frac{-17±15}{8}
Multiply 2 times 4.
x=-\frac{2}{8}
Now solve the equation x=\frac{-17±15}{8} when ± is plus. Add -17 to 15.
x=-\frac{1}{4}
Reduce the fraction \frac{-2}{8} to lowest terms by extracting and canceling out 2.
x=-\frac{32}{8}
Now solve the equation x=\frac{-17±15}{8} when ± is minus. Subtract 15 from -17.
x=-4
Divide -32 by 8.
x=-\frac{1}{4} x=-4
The equation is now solved.
4x^{2}+17x+4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}+17x+4-4=-4
Subtract 4 from both sides of the equation.
4x^{2}+17x=-4
Subtracting 4 from itself leaves 0.
\frac{4x^{2}+17x}{4}=-\frac{4}{4}
Divide both sides by 4.
x^{2}+\frac{17}{4}x=-\frac{4}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{17}{4}x=-1
Divide -4 by 4.
x^{2}+\frac{17}{4}x+\left(\frac{17}{8}\right)^{2}=-1+\left(\frac{17}{8}\right)^{2}
Divide \frac{17}{4}, the coefficient of the x term, by 2 to get \frac{17}{8}. Then add the square of \frac{17}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{17}{4}x+\frac{289}{64}=-1+\frac{289}{64}
Square \frac{17}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{17}{4}x+\frac{289}{64}=\frac{225}{64}
Add -1 to \frac{289}{64}.
\left(x+\frac{17}{8}\right)^{2}=\frac{225}{64}
Factor x^{2}+\frac{17}{4}x+\frac{289}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{17}{8}\right)^{2}}=\sqrt{\frac{225}{64}}
Take the square root of both sides of the equation.
x+\frac{17}{8}=\frac{15}{8} x+\frac{17}{8}=-\frac{15}{8}
Simplify.
x=-\frac{1}{4} x=-4
Subtract \frac{17}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}