Solve for x
x=\frac{\sqrt{905}}{2}-14\approx 1.041608956
x=-\frac{\sqrt{905}}{2}-14\approx -29.041608956
Graph
Share
Copied to clipboard
4x^{2}+112x=121
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4x^{2}+112x-121=121-121
Subtract 121 from both sides of the equation.
4x^{2}+112x-121=0
Subtracting 121 from itself leaves 0.
x=\frac{-112±\sqrt{112^{2}-4\times 4\left(-121\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 112 for b, and -121 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-112±\sqrt{12544-4\times 4\left(-121\right)}}{2\times 4}
Square 112.
x=\frac{-112±\sqrt{12544-16\left(-121\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-112±\sqrt{12544+1936}}{2\times 4}
Multiply -16 times -121.
x=\frac{-112±\sqrt{14480}}{2\times 4}
Add 12544 to 1936.
x=\frac{-112±4\sqrt{905}}{2\times 4}
Take the square root of 14480.
x=\frac{-112±4\sqrt{905}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{905}-112}{8}
Now solve the equation x=\frac{-112±4\sqrt{905}}{8} when ± is plus. Add -112 to 4\sqrt{905}.
x=\frac{\sqrt{905}}{2}-14
Divide -112+4\sqrt{905} by 8.
x=\frac{-4\sqrt{905}-112}{8}
Now solve the equation x=\frac{-112±4\sqrt{905}}{8} when ± is minus. Subtract 4\sqrt{905} from -112.
x=-\frac{\sqrt{905}}{2}-14
Divide -112-4\sqrt{905} by 8.
x=\frac{\sqrt{905}}{2}-14 x=-\frac{\sqrt{905}}{2}-14
The equation is now solved.
4x^{2}+112x=121
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}+112x}{4}=\frac{121}{4}
Divide both sides by 4.
x^{2}+\frac{112}{4}x=\frac{121}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+28x=\frac{121}{4}
Divide 112 by 4.
x^{2}+28x+14^{2}=\frac{121}{4}+14^{2}
Divide 28, the coefficient of the x term, by 2 to get 14. Then add the square of 14 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+28x+196=\frac{121}{4}+196
Square 14.
x^{2}+28x+196=\frac{905}{4}
Add \frac{121}{4} to 196.
\left(x+14\right)^{2}=\frac{905}{4}
Factor x^{2}+28x+196. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+14\right)^{2}}=\sqrt{\frac{905}{4}}
Take the square root of both sides of the equation.
x+14=\frac{\sqrt{905}}{2} x+14=-\frac{\sqrt{905}}{2}
Simplify.
x=\frac{\sqrt{905}}{2}-14 x=-\frac{\sqrt{905}}{2}-14
Subtract 14 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}