Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

200=\left(40-x-25\right)\left(400+5x\right)
Multiply 4 and 50 to get 200.
200=\left(15-x\right)\left(400+5x\right)
Subtract 25 from 40 to get 15.
200=6000-325x-5x^{2}
Use the distributive property to multiply 15-x by 400+5x and combine like terms.
6000-325x-5x^{2}=200
Swap sides so that all variable terms are on the left hand side.
6000-325x-5x^{2}-200=0
Subtract 200 from both sides.
5800-325x-5x^{2}=0
Subtract 200 from 6000 to get 5800.
-5x^{2}-325x+5800=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-325\right)±\sqrt{\left(-325\right)^{2}-4\left(-5\right)\times 5800}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, -325 for b, and 5800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-325\right)±\sqrt{105625-4\left(-5\right)\times 5800}}{2\left(-5\right)}
Square -325.
x=\frac{-\left(-325\right)±\sqrt{105625+20\times 5800}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-\left(-325\right)±\sqrt{105625+116000}}{2\left(-5\right)}
Multiply 20 times 5800.
x=\frac{-\left(-325\right)±\sqrt{221625}}{2\left(-5\right)}
Add 105625 to 116000.
x=\frac{-\left(-325\right)±15\sqrt{985}}{2\left(-5\right)}
Take the square root of 221625.
x=\frac{325±15\sqrt{985}}{2\left(-5\right)}
The opposite of -325 is 325.
x=\frac{325±15\sqrt{985}}{-10}
Multiply 2 times -5.
x=\frac{15\sqrt{985}+325}{-10}
Now solve the equation x=\frac{325±15\sqrt{985}}{-10} when ± is plus. Add 325 to 15\sqrt{985}.
x=\frac{-3\sqrt{985}-65}{2}
Divide 325+15\sqrt{985} by -10.
x=\frac{325-15\sqrt{985}}{-10}
Now solve the equation x=\frac{325±15\sqrt{985}}{-10} when ± is minus. Subtract 15\sqrt{985} from 325.
x=\frac{3\sqrt{985}-65}{2}
Divide 325-15\sqrt{985} by -10.
x=\frac{-3\sqrt{985}-65}{2} x=\frac{3\sqrt{985}-65}{2}
The equation is now solved.
200=\left(40-x-25\right)\left(400+5x\right)
Multiply 4 and 50 to get 200.
200=\left(15-x\right)\left(400+5x\right)
Subtract 25 from 40 to get 15.
200=6000-325x-5x^{2}
Use the distributive property to multiply 15-x by 400+5x and combine like terms.
6000-325x-5x^{2}=200
Swap sides so that all variable terms are on the left hand side.
-325x-5x^{2}=200-6000
Subtract 6000 from both sides.
-325x-5x^{2}=-5800
Subtract 6000 from 200 to get -5800.
-5x^{2}-325x=-5800
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5x^{2}-325x}{-5}=-\frac{5800}{-5}
Divide both sides by -5.
x^{2}+\left(-\frac{325}{-5}\right)x=-\frac{5800}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}+65x=-\frac{5800}{-5}
Divide -325 by -5.
x^{2}+65x=1160
Divide -5800 by -5.
x^{2}+65x+\left(\frac{65}{2}\right)^{2}=1160+\left(\frac{65}{2}\right)^{2}
Divide 65, the coefficient of the x term, by 2 to get \frac{65}{2}. Then add the square of \frac{65}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+65x+\frac{4225}{4}=1160+\frac{4225}{4}
Square \frac{65}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+65x+\frac{4225}{4}=\frac{8865}{4}
Add 1160 to \frac{4225}{4}.
\left(x+\frac{65}{2}\right)^{2}=\frac{8865}{4}
Factor x^{2}+65x+\frac{4225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{65}{2}\right)^{2}}=\sqrt{\frac{8865}{4}}
Take the square root of both sides of the equation.
x+\frac{65}{2}=\frac{3\sqrt{985}}{2} x+\frac{65}{2}=-\frac{3\sqrt{985}}{2}
Simplify.
x=\frac{3\sqrt{985}-65}{2} x=\frac{-3\sqrt{985}-65}{2}
Subtract \frac{65}{2} from both sides of the equation.