Evaluate
\frac{37}{15}\approx 2.466666667
Factor
\frac{37}{3 \cdot 5} = 2\frac{7}{15} = 2.466666666666667
Share
Copied to clipboard
4\left(\frac{2}{2}-\frac{1}{2}+\frac{1}{6}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{5}\right)
Convert 1 to fraction \frac{2}{2}.
4\left(\frac{2-1}{2}+\frac{1}{6}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{5}\right)
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
4\left(\frac{1}{2}+\frac{1}{6}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{5}\right)
Subtract 1 from 2 to get 1.
4\left(\frac{3}{6}+\frac{1}{6}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{5}\right)
Least common multiple of 2 and 6 is 6. Convert \frac{1}{2} and \frac{1}{6} to fractions with denominator 6.
4\left(\frac{3+1}{6}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{5}\right)
Since \frac{3}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
4\left(\frac{4}{6}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{5}\right)
Add 3 and 1 to get 4.
4\left(\frac{2}{3}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{5}\right)
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
4\left(\frac{4}{6}-\frac{3}{6}+\frac{1}{2}-\frac{1}{4}+\frac{1}{5}\right)
Least common multiple of 3 and 2 is 6. Convert \frac{2}{3} and \frac{1}{2} to fractions with denominator 6.
4\left(\frac{4-3}{6}+\frac{1}{2}-\frac{1}{4}+\frac{1}{5}\right)
Since \frac{4}{6} and \frac{3}{6} have the same denominator, subtract them by subtracting their numerators.
4\left(\frac{1}{6}+\frac{1}{2}-\frac{1}{4}+\frac{1}{5}\right)
Subtract 3 from 4 to get 1.
4\left(\frac{1}{6}+\frac{3}{6}-\frac{1}{4}+\frac{1}{5}\right)
Least common multiple of 6 and 2 is 6. Convert \frac{1}{6} and \frac{1}{2} to fractions with denominator 6.
4\left(\frac{1+3}{6}-\frac{1}{4}+\frac{1}{5}\right)
Since \frac{1}{6} and \frac{3}{6} have the same denominator, add them by adding their numerators.
4\left(\frac{4}{6}-\frac{1}{4}+\frac{1}{5}\right)
Add 1 and 3 to get 4.
4\left(\frac{2}{3}-\frac{1}{4}+\frac{1}{5}\right)
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
4\left(\frac{8}{12}-\frac{3}{12}+\frac{1}{5}\right)
Least common multiple of 3 and 4 is 12. Convert \frac{2}{3} and \frac{1}{4} to fractions with denominator 12.
4\left(\frac{8-3}{12}+\frac{1}{5}\right)
Since \frac{8}{12} and \frac{3}{12} have the same denominator, subtract them by subtracting their numerators.
4\left(\frac{5}{12}+\frac{1}{5}\right)
Subtract 3 from 8 to get 5.
4\left(\frac{25}{60}+\frac{12}{60}\right)
Least common multiple of 12 and 5 is 60. Convert \frac{5}{12} and \frac{1}{5} to fractions with denominator 60.
4\times \frac{25+12}{60}
Since \frac{25}{60} and \frac{12}{60} have the same denominator, add them by adding their numerators.
4\times \frac{37}{60}
Add 25 and 12 to get 37.
\frac{4\times 37}{60}
Express 4\times \frac{37}{60} as a single fraction.
\frac{148}{60}
Multiply 4 and 37 to get 148.
\frac{37}{15}
Reduce the fraction \frac{148}{60} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}