Evaluate
\frac{132}{25}=5.28
Factor
\frac{2 ^ {2} \cdot 3 \cdot 11}{5 ^ {2}} = 5\frac{7}{25} = 5.28
Share
Copied to clipboard
\frac{4\times 12}{5}\times \frac{16+\left(\frac{12}{5}\right)^{2}-\left(16-\frac{12}{5}\times 2\right)}{2\times 4\times \frac{12}{5}}
Express 4\times \frac{12}{5} as a single fraction.
\frac{48}{5}\times \frac{16+\left(\frac{12}{5}\right)^{2}-\left(16-\frac{12}{5}\times 2\right)}{2\times 4\times \frac{12}{5}}
Multiply 4 and 12 to get 48.
\frac{48}{5}\times \frac{16+\frac{144}{25}-\left(16-\frac{12}{5}\times 2\right)}{2\times 4\times \frac{12}{5}}
Calculate \frac{12}{5} to the power of 2 and get \frac{144}{25}.
\frac{48}{5}\times \frac{\frac{400}{25}+\frac{144}{25}-\left(16-\frac{12}{5}\times 2\right)}{2\times 4\times \frac{12}{5}}
Convert 16 to fraction \frac{400}{25}.
\frac{48}{5}\times \frac{\frac{400+144}{25}-\left(16-\frac{12}{5}\times 2\right)}{2\times 4\times \frac{12}{5}}
Since \frac{400}{25} and \frac{144}{25} have the same denominator, add them by adding their numerators.
\frac{48}{5}\times \frac{\frac{544}{25}-\left(16-\frac{12}{5}\times 2\right)}{2\times 4\times \frac{12}{5}}
Add 400 and 144 to get 544.
\frac{48}{5}\times \frac{\frac{544}{25}-\left(16-\frac{12\times 2}{5}\right)}{2\times 4\times \frac{12}{5}}
Express \frac{12}{5}\times 2 as a single fraction.
\frac{48}{5}\times \frac{\frac{544}{25}-\left(16-\frac{24}{5}\right)}{2\times 4\times \frac{12}{5}}
Multiply 12 and 2 to get 24.
\frac{48}{5}\times \frac{\frac{544}{25}-\left(\frac{80}{5}-\frac{24}{5}\right)}{2\times 4\times \frac{12}{5}}
Convert 16 to fraction \frac{80}{5}.
\frac{48}{5}\times \frac{\frac{544}{25}-\frac{80-24}{5}}{2\times 4\times \frac{12}{5}}
Since \frac{80}{5} and \frac{24}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{48}{5}\times \frac{\frac{544}{25}-\frac{56}{5}}{2\times 4\times \frac{12}{5}}
Subtract 24 from 80 to get 56.
\frac{48}{5}\times \frac{\frac{544}{25}-\frac{280}{25}}{2\times 4\times \frac{12}{5}}
Least common multiple of 25 and 5 is 25. Convert \frac{544}{25} and \frac{56}{5} to fractions with denominator 25.
\frac{48}{5}\times \frac{\frac{544-280}{25}}{2\times 4\times \frac{12}{5}}
Since \frac{544}{25} and \frac{280}{25} have the same denominator, subtract them by subtracting their numerators.
\frac{48}{5}\times \frac{\frac{264}{25}}{2\times 4\times \frac{12}{5}}
Subtract 280 from 544 to get 264.
\frac{48}{5}\times \frac{\frac{264}{25}}{8\times \frac{12}{5}}
Multiply 2 and 4 to get 8.
\frac{48}{5}\times \frac{\frac{264}{25}}{\frac{8\times 12}{5}}
Express 8\times \frac{12}{5} as a single fraction.
\frac{48}{5}\times \frac{\frac{264}{25}}{\frac{96}{5}}
Multiply 8 and 12 to get 96.
\frac{48}{5}\times \frac{264}{25}\times \frac{5}{96}
Divide \frac{264}{25} by \frac{96}{5} by multiplying \frac{264}{25} by the reciprocal of \frac{96}{5}.
\frac{48}{5}\times \frac{264\times 5}{25\times 96}
Multiply \frac{264}{25} times \frac{5}{96} by multiplying numerator times numerator and denominator times denominator.
\frac{48}{5}\times \frac{1320}{2400}
Do the multiplications in the fraction \frac{264\times 5}{25\times 96}.
\frac{48}{5}\times \frac{11}{20}
Reduce the fraction \frac{1320}{2400} to lowest terms by extracting and canceling out 120.
\frac{48\times 11}{5\times 20}
Multiply \frac{48}{5} times \frac{11}{20} by multiplying numerator times numerator and denominator times denominator.
\frac{528}{100}
Do the multiplications in the fraction \frac{48\times 11}{5\times 20}.
\frac{132}{25}
Reduce the fraction \frac{528}{100} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}