Solve for x
x = \frac{3 \sqrt{15}}{2} \approx 5.809475019
x = -\frac{3 \sqrt{15}}{2} \approx -5.809475019
Graph
Share
Copied to clipboard
\frac{4}{3}x^{2}-1+1=45
Multiply 4 and \frac{1}{3} to get \frac{4}{3}.
\frac{4}{3}x^{2}=45
Add -1 and 1 to get 0.
x^{2}=45\times \frac{3}{4}
Multiply both sides by \frac{3}{4}, the reciprocal of \frac{4}{3}.
x^{2}=\frac{135}{4}
Multiply 45 and \frac{3}{4} to get \frac{135}{4}.
x=\frac{3\sqrt{15}}{2} x=-\frac{3\sqrt{15}}{2}
Take the square root of both sides of the equation.
\frac{4}{3}x^{2}-1+1=45
Multiply 4 and \frac{1}{3} to get \frac{4}{3}.
\frac{4}{3}x^{2}=45
Add -1 and 1 to get 0.
\frac{4}{3}x^{2}-45=0
Subtract 45 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times \frac{4}{3}\left(-45\right)}}{2\times \frac{4}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{4}{3} for a, 0 for b, and -45 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{4}{3}\left(-45\right)}}{2\times \frac{4}{3}}
Square 0.
x=\frac{0±\sqrt{-\frac{16}{3}\left(-45\right)}}{2\times \frac{4}{3}}
Multiply -4 times \frac{4}{3}.
x=\frac{0±\sqrt{240}}{2\times \frac{4}{3}}
Multiply -\frac{16}{3} times -45.
x=\frac{0±4\sqrt{15}}{2\times \frac{4}{3}}
Take the square root of 240.
x=\frac{0±4\sqrt{15}}{\frac{8}{3}}
Multiply 2 times \frac{4}{3}.
x=\frac{3\sqrt{15}}{2}
Now solve the equation x=\frac{0±4\sqrt{15}}{\frac{8}{3}} when ± is plus.
x=-\frac{3\sqrt{15}}{2}
Now solve the equation x=\frac{0±4\sqrt{15}}{\frac{8}{3}} when ± is minus.
x=\frac{3\sqrt{15}}{2} x=-\frac{3\sqrt{15}}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}