Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\sqrt{3}-\left(\frac{2\times 4}{4}-\frac{x}{4}\right)\left(4\sqrt{3}-\frac{\sqrt{3}x}{2}\right)-\left(\frac{x}{2}-2\right)\left(\frac{\sqrt{3}x}{2}-2\sqrt{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{4}{4}.
4\sqrt{3}-\frac{2\times 4-x}{4}\left(4\sqrt{3}-\frac{\sqrt{3}x}{2}\right)-\left(\frac{x}{2}-2\right)\left(\frac{\sqrt{3}x}{2}-2\sqrt{3}\right)
Since \frac{2\times 4}{4} and \frac{x}{4} have the same denominator, subtract them by subtracting their numerators.
4\sqrt{3}-\frac{8-x}{4}\left(4\sqrt{3}-\frac{\sqrt{3}x}{2}\right)-\left(\frac{x}{2}-2\right)\left(\frac{\sqrt{3}x}{2}-2\sqrt{3}\right)
Do the multiplications in 2\times 4-x.
4\sqrt{3}-\frac{8-x}{4}\left(\frac{2\times 4\sqrt{3}}{2}-\frac{\sqrt{3}x}{2}\right)-\left(\frac{x}{2}-2\right)\left(\frac{\sqrt{3}x}{2}-2\sqrt{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 4\sqrt{3} times \frac{2}{2}.
4\sqrt{3}-\frac{8-x}{4}\times \frac{2\times 4\sqrt{3}-\sqrt{3}x}{2}-\left(\frac{x}{2}-2\right)\left(\frac{\sqrt{3}x}{2}-2\sqrt{3}\right)
Since \frac{2\times 4\sqrt{3}}{2} and \frac{\sqrt{3}x}{2} have the same denominator, subtract them by subtracting their numerators.
4\sqrt{3}-\frac{8-x}{4}\times \frac{8\sqrt{3}-\sqrt{3}x}{2}-\left(\frac{x}{2}-2\right)\left(\frac{\sqrt{3}x}{2}-2\sqrt{3}\right)
Do the multiplications in 2\times 4\sqrt{3}-\sqrt{3}x.
4\sqrt{3}-\frac{\left(8-x\right)\left(8\sqrt{3}-\sqrt{3}x\right)}{4\times 2}-\left(\frac{x}{2}-2\right)\left(\frac{\sqrt{3}x}{2}-2\sqrt{3}\right)
Multiply \frac{8-x}{4} times \frac{8\sqrt{3}-\sqrt{3}x}{2} by multiplying numerator times numerator and denominator times denominator.
4\sqrt{3}-\frac{\left(8-x\right)\left(8\sqrt{3}-\sqrt{3}x\right)}{8}-\left(\frac{x}{2}-2\right)\left(\frac{\sqrt{3}x}{2}-2\sqrt{3}\right)
Multiply 4 and 2 to get 8.
\frac{8\times 4\sqrt{3}}{8}-\frac{\left(8-x\right)\left(8\sqrt{3}-\sqrt{3}x\right)}{8}-\left(\frac{x}{2}-2\right)\left(\frac{\sqrt{3}x}{2}-2\sqrt{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 4\sqrt{3} times \frac{8}{8}.
\frac{8\times 4\sqrt{3}-\left(8-x\right)\left(8\sqrt{3}-\sqrt{3}x\right)}{8}-\left(\frac{x}{2}-2\right)\left(\frac{\sqrt{3}x}{2}-2\sqrt{3}\right)
Since \frac{8\times 4\sqrt{3}}{8} and \frac{\left(8-x\right)\left(8\sqrt{3}-\sqrt{3}x\right)}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{32\sqrt{3}-64\sqrt{3}+8\sqrt{3}x+8\sqrt{3}x-x^{2}\sqrt{3}}{8}-\left(\frac{x}{2}-2\right)\left(\frac{\sqrt{3}x}{2}-2\sqrt{3}\right)
Do the multiplications in 8\times 4\sqrt{3}-\left(8-x\right)\left(8\sqrt{3}-\sqrt{3}x\right).
\frac{-x^{2}\sqrt{3}-32\sqrt{3}+16\sqrt{3}x}{8}-\left(\frac{x}{2}-2\right)\left(\frac{\sqrt{3}x}{2}-2\sqrt{3}\right)
Combine like terms in 32\sqrt{3}-64\sqrt{3}+8\sqrt{3}x+8\sqrt{3}x-x^{2}\sqrt{3}.
\frac{-x^{2}\sqrt{3}-32\sqrt{3}+16\sqrt{3}x}{8}-\left(\frac{x}{2}-\frac{2\times 2}{2}\right)\left(\frac{\sqrt{3}x}{2}-2\sqrt{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{2}{2}.
\frac{-x^{2}\sqrt{3}-32\sqrt{3}+16\sqrt{3}x}{8}-\frac{x-2\times 2}{2}\left(\frac{\sqrt{3}x}{2}-2\sqrt{3}\right)
Since \frac{x}{2} and \frac{2\times 2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{2}\sqrt{3}-32\sqrt{3}+16\sqrt{3}x}{8}-\frac{x-4}{2}\left(\frac{\sqrt{3}x}{2}-2\sqrt{3}\right)
Do the multiplications in x-2\times 2.
\frac{-x^{2}\sqrt{3}-32\sqrt{3}+16\sqrt{3}x}{8}-\frac{x-4}{2}\left(\frac{\sqrt{3}x}{2}+\frac{2\left(-2\right)\sqrt{3}}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -2\sqrt{3} times \frac{2}{2}.
\frac{-x^{2}\sqrt{3}-32\sqrt{3}+16\sqrt{3}x}{8}-\frac{x-4}{2}\times \frac{\sqrt{3}x+2\left(-2\right)\sqrt{3}}{2}
Since \frac{\sqrt{3}x}{2} and \frac{2\left(-2\right)\sqrt{3}}{2} have the same denominator, add them by adding their numerators.
\frac{-x^{2}\sqrt{3}-32\sqrt{3}+16\sqrt{3}x}{8}-\frac{x-4}{2}\times \frac{\sqrt{3}x-4\sqrt{3}}{2}
Do the multiplications in \sqrt{3}x+2\left(-2\right)\sqrt{3}.
\frac{-x^{2}\sqrt{3}-32\sqrt{3}+16\sqrt{3}x}{8}-\frac{\left(x-4\right)\left(\sqrt{3}x-4\sqrt{3}\right)}{2\times 2}
Multiply \frac{x-4}{2} times \frac{\sqrt{3}x-4\sqrt{3}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-x^{2}\sqrt{3}-32\sqrt{3}+16\sqrt{3}x}{8}-\frac{\left(x-4\right)\left(\sqrt{3}x-4\sqrt{3}\right)}{4}
Multiply 2 and 2 to get 4.
\frac{-x^{2}\sqrt{3}-32\sqrt{3}+16\sqrt{3}x}{8}-\frac{2\left(x-4\right)\left(\sqrt{3}x-4\sqrt{3}\right)}{8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 8 and 4 is 8. Multiply \frac{\left(x-4\right)\left(\sqrt{3}x-4\sqrt{3}\right)}{4} times \frac{2}{2}.
\frac{-x^{2}\sqrt{3}-32\sqrt{3}+16\sqrt{3}x-2\left(x-4\right)\left(\sqrt{3}x-4\sqrt{3}\right)}{8}
Since \frac{-x^{2}\sqrt{3}-32\sqrt{3}+16\sqrt{3}x}{8} and \frac{2\left(x-4\right)\left(\sqrt{3}x-4\sqrt{3}\right)}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{2}\sqrt{3}-32\sqrt{3}+16\sqrt{3}x-2x^{2}\sqrt{3}+8x\sqrt{3}+8x\sqrt{3}-32\sqrt{3}}{8}
Do the multiplications in -x^{2}\sqrt{3}-32\sqrt{3}+16\sqrt{3}x-2\left(x-4\right)\left(\sqrt{3}x-4\sqrt{3}\right).
\frac{-64\sqrt{3}-3x^{2}\sqrt{3}+32\sqrt{3}x}{8}
Combine like terms in -x^{2}\sqrt{3}-32\sqrt{3}+16\sqrt{3}x-2x^{2}\sqrt{3}+8x\sqrt{3}+8x\sqrt{3}-32\sqrt{3}.
\frac{32\sqrt{3}-\left(8-x\right)\left(8\sqrt{3}-\sqrt{3}x\right)-2\left(x-4\right)\left(\sqrt{3}x-4\sqrt{3}\right)}{8}
Factor out \frac{1}{8}.