Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4\sqrt{3}\times \frac{1-\sqrt{3}}{\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}
Rationalize the denominator of \frac{1}{1+\sqrt{3}} by multiplying numerator and denominator by 1-\sqrt{3}.
4\sqrt{3}\times \frac{1-\sqrt{3}}{1^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4\sqrt{3}\times \frac{1-\sqrt{3}}{1-3}
Square 1. Square \sqrt{3}.
4\sqrt{3}\times \frac{1-\sqrt{3}}{-2}
Subtract 3 from 1 to get -2.
4\sqrt{3}\times \frac{-1+\sqrt{3}}{2}
Multiply both numerator and denominator by -1.
2\left(-1+\sqrt{3}\right)\sqrt{3}
Cancel out 2, the greatest common factor in 4 and 2.
\left(-2+2\sqrt{3}\right)\sqrt{3}
Use the distributive property to multiply 2 by -1+\sqrt{3}.
-2\sqrt{3}+2\left(\sqrt{3}\right)^{2}
Use the distributive property to multiply -2+2\sqrt{3} by \sqrt{3}.
-2\sqrt{3}+2\times 3
The square of \sqrt{3} is 3.
-2\sqrt{3}+6
Multiply 2 and 3 to get 6.