Evaluate
\frac{10\sqrt{6}}{3}\approx 8.164965809
Share
Copied to clipboard
\frac{4\times 5\sqrt{12}}{\sqrt{72}}
Calculate the square root of 25 and get 5.
\frac{20\sqrt{12}}{\sqrt{72}}
Multiply 4 and 5 to get 20.
\frac{20\times 2\sqrt{3}}{\sqrt{72}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{40\sqrt{3}}{\sqrt{72}}
Multiply 20 and 2 to get 40.
\frac{40\sqrt{3}}{6\sqrt{2}}
Factor 72=6^{2}\times 2. Rewrite the square root of the product \sqrt{6^{2}\times 2} as the product of square roots \sqrt{6^{2}}\sqrt{2}. Take the square root of 6^{2}.
\frac{20\sqrt{3}}{3\sqrt{2}}
Cancel out 2 in both numerator and denominator.
\frac{20\sqrt{3}\sqrt{2}}{3\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{20\sqrt{3}}{3\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{20\sqrt{3}\sqrt{2}}{3\times 2}
The square of \sqrt{2} is 2.
\frac{20\sqrt{6}}{3\times 2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{20\sqrt{6}}{6}
Multiply 3 and 2 to get 6.
\frac{10}{3}\sqrt{6}
Divide 20\sqrt{6} by 6 to get \frac{10}{3}\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}