Evaluate
30u
Differentiate w.r.t. u
30
Share
Copied to clipboard
4\times \frac{\sqrt{15}}{\sqrt{8}}u\times \frac{1}{5}\sqrt{750}
Rewrite the square root of the division \sqrt{\frac{15}{8}} as the division of square roots \frac{\sqrt{15}}{\sqrt{8}}.
4\times \frac{\sqrt{15}}{2\sqrt{2}}u\times \frac{1}{5}\sqrt{750}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
4\times \frac{\sqrt{15}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}u\times \frac{1}{5}\sqrt{750}
Rationalize the denominator of \frac{\sqrt{15}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
4\times \frac{\sqrt{15}\sqrt{2}}{2\times 2}u\times \frac{1}{5}\sqrt{750}
The square of \sqrt{2} is 2.
4\times \frac{\sqrt{30}}{2\times 2}u\times \frac{1}{5}\sqrt{750}
To multiply \sqrt{15} and \sqrt{2}, multiply the numbers under the square root.
4\times \frac{\sqrt{30}}{4}u\times \frac{1}{5}\sqrt{750}
Multiply 2 and 2 to get 4.
\frac{4}{5}\times \frac{\sqrt{30}}{4}u\sqrt{750}
Multiply 4 and \frac{1}{5} to get \frac{4}{5}.
\frac{4}{5}\times \frac{\sqrt{30}}{4}u\times 5\sqrt{30}
Factor 750=5^{2}\times 30. Rewrite the square root of the product \sqrt{5^{2}\times 30} as the product of square roots \sqrt{5^{2}}\sqrt{30}. Take the square root of 5^{2}.
4\times \frac{\sqrt{30}}{4}u\sqrt{30}
Cancel out 5 and 5.
\sqrt{30}u\sqrt{30}
Cancel out 4 and 4.
30u
Multiply \sqrt{30} and \sqrt{30} to get 30.
\frac{\mathrm{d}}{\mathrm{d}u}(4\times \frac{\sqrt{15}}{\sqrt{8}}u\times \frac{1}{5}\sqrt{750})
Rewrite the square root of the division \sqrt{\frac{15}{8}} as the division of square roots \frac{\sqrt{15}}{\sqrt{8}}.
\frac{\mathrm{d}}{\mathrm{d}u}(4\times \frac{\sqrt{15}}{2\sqrt{2}}u\times \frac{1}{5}\sqrt{750})
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\mathrm{d}}{\mathrm{d}u}(4\times \frac{\sqrt{15}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}u\times \frac{1}{5}\sqrt{750})
Rationalize the denominator of \frac{\sqrt{15}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\mathrm{d}}{\mathrm{d}u}(4\times \frac{\sqrt{15}\sqrt{2}}{2\times 2}u\times \frac{1}{5}\sqrt{750})
The square of \sqrt{2} is 2.
\frac{\mathrm{d}}{\mathrm{d}u}(4\times \frac{\sqrt{30}}{2\times 2}u\times \frac{1}{5}\sqrt{750})
To multiply \sqrt{15} and \sqrt{2}, multiply the numbers under the square root.
\frac{\mathrm{d}}{\mathrm{d}u}(4\times \frac{\sqrt{30}}{4}u\times \frac{1}{5}\sqrt{750})
Multiply 2 and 2 to get 4.
\frac{\mathrm{d}}{\mathrm{d}u}(\frac{4}{5}\times \frac{\sqrt{30}}{4}u\sqrt{750})
Multiply 4 and \frac{1}{5} to get \frac{4}{5}.
\frac{\mathrm{d}}{\mathrm{d}u}(\frac{4}{5}\times \frac{\sqrt{30}}{4}u\times 5\sqrt{30})
Factor 750=5^{2}\times 30. Rewrite the square root of the product \sqrt{5^{2}\times 30} as the product of square roots \sqrt{5^{2}}\sqrt{30}. Take the square root of 5^{2}.
\frac{\mathrm{d}}{\mathrm{d}u}(4\times \frac{\sqrt{30}}{4}u\sqrt{30})
Cancel out 5 and 5.
\frac{\mathrm{d}}{\mathrm{d}u}(\sqrt{30}u\sqrt{30})
Cancel out 4 and 4.
\frac{\mathrm{d}}{\mathrm{d}u}(30u)
Multiply \sqrt{30} and \sqrt{30} to get 30.
30u^{1-1}
The derivative of ax^{n} is nax^{n-1}.
30u^{0}
Subtract 1 from 1.
30\times 1
For any term t except 0, t^{0}=1.
30
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}