Evaluate
-\frac{4}{3}\approx -1.333333333
Factor
-\frac{4}{3} = -1\frac{1}{3} = -1.3333333333333333
Share
Copied to clipboard
\frac{4\times \frac{\sqrt{1}}{\sqrt{2}}}{-\sqrt{6}}\times \frac{1}{3}\sqrt{12}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
\frac{4\times \frac{1}{\sqrt{2}}}{-\sqrt{6}}\times \frac{1}{3}\sqrt{12}
Calculate the square root of 1 and get 1.
\frac{4\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}{-\sqrt{6}}\times \frac{1}{3}\sqrt{12}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{4\times \frac{\sqrt{2}}{2}}{-\sqrt{6}}\times \frac{1}{3}\sqrt{12}
The square of \sqrt{2} is 2.
\frac{2\sqrt{2}}{-\sqrt{6}}\times \frac{1}{3}\sqrt{12}
Cancel out 2, the greatest common factor in 4 and 2.
\frac{2\sqrt{2}}{-\sqrt{6}}\times \frac{1}{3}\times 2\sqrt{3}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{2\sqrt{2}}{-\sqrt{6}}\times \frac{2}{3}\sqrt{3}
Multiply \frac{1}{3} and 2 to get \frac{2}{3}.
\frac{2\sqrt{2}\times 2}{\left(-\sqrt{6}\right)\times 3}\sqrt{3}
Multiply \frac{2\sqrt{2}}{-\sqrt{6}} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{2\sqrt{2}\times 2\sqrt{3}}{\left(-\sqrt{6}\right)\times 3}
Express \frac{2\sqrt{2}\times 2}{\left(-\sqrt{6}\right)\times 3}\sqrt{3} as a single fraction.
\frac{4\sqrt{2}\sqrt{3}}{\left(-\sqrt{6}\right)\times 3}
Multiply 2 and 2 to get 4.
\frac{4\sqrt{6}}{\left(-\sqrt{6}\right)\times 3}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{-\left(-1\right)\times 4\sqrt{6}}{-3\sqrt{6}}
Extract the negative sign in \sqrt{6}.
\frac{-4}{3}
Cancel out -\sqrt{6} in both numerator and denominator.
-\frac{4}{3}
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}