Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}\pi =9.5-4\pi
Subtract 4\pi from both sides.
x^{2}=\frac{9.5-4\pi }{-\pi }
Dividing by -\pi undoes the multiplication by -\pi .
x^{2}=-\frac{19}{2\pi }+4
Divide 9.5-4\pi by -\pi .
x=\frac{\sqrt{16\pi -38}}{2\sqrt{\pi }} x=-\frac{\sqrt{16\pi -38}}{2\sqrt{\pi }}
Take the square root of both sides of the equation.
4\pi -x^{2}\pi -9.5=0
Subtract 9.5 from both sides.
-\pi x^{2}+4\pi -9.5=0
Reorder the terms.
\left(-\pi \right)x^{2}+4\pi -9.5=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-\pi \right)\left(4\pi -9.5\right)}}{2\left(-\pi \right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\pi for a, 0 for b, and 4\pi -9.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\pi \right)\left(4\pi -9.5\right)}}{2\left(-\pi \right)}
Square 0.
x=\frac{0±\sqrt{4\pi \left(4\pi -9.5\right)}}{2\left(-\pi \right)}
Multiply -4 times -\pi .
x=\frac{0±2\sqrt{\pi \left(4\pi -9.5\right)}}{2\left(-\pi \right)}
Take the square root of 4\pi \left(4\pi -9.5\right).
x=\frac{0±2\sqrt{\pi \left(4\pi -9.5\right)}}{-2\pi }
Multiply 2 times -\pi .
x=-\frac{\sqrt{4\pi -9.5}}{\sqrt{\pi }}
Now solve the equation x=\frac{0±2\sqrt{\pi \left(4\pi -9.5\right)}}{-2\pi } when ± is plus.
x=\frac{\sqrt{4\pi -9.5}}{\sqrt{\pi }}
Now solve the equation x=\frac{0±2\sqrt{\pi \left(4\pi -9.5\right)}}{-2\pi } when ± is minus.
x=-\frac{\sqrt{4\pi -9.5}}{\sqrt{\pi }} x=\frac{\sqrt{4\pi -9.5}}{\sqrt{\pi }}
The equation is now solved.