Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\pi -\frac{x^{2}\pi }{4}-\left(\frac{4-x}{2}\right)^{2}\pi
Express \frac{x^{2}}{4}\pi as a single fraction.
\frac{4\times 4\pi }{4}-\frac{x^{2}\pi }{4}-\left(\frac{4-x}{2}\right)^{2}\pi
To add or subtract expressions, expand them to make their denominators the same. Multiply 4\pi times \frac{4}{4}.
\frac{4\times 4\pi -x^{2}\pi }{4}-\left(\frac{4-x}{2}\right)^{2}\pi
Since \frac{4\times 4\pi }{4} and \frac{x^{2}\pi }{4} have the same denominator, subtract them by subtracting their numerators.
\frac{16\pi -x^{2}\pi }{4}-\left(\frac{4-x}{2}\right)^{2}\pi
Do the multiplications in 4\times 4\pi -x^{2}\pi .
\frac{16\pi -x^{2}\pi }{4}-\frac{\left(4-x\right)^{2}}{2^{2}}\pi
To raise \frac{4-x}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{16\pi -x^{2}\pi }{4}-\frac{\left(4-x\right)^{2}\pi }{2^{2}}
Express \frac{\left(4-x\right)^{2}}{2^{2}}\pi as a single fraction.
\frac{16\pi -x^{2}\pi }{4}-\frac{\left(4-x\right)^{2}\pi }{4}
Calculate 2 to the power of 2 and get 4.
\frac{16\pi -x^{2}\pi -\left(4-x\right)^{2}\pi }{4}
Since \frac{16\pi -x^{2}\pi }{4} and \frac{\left(4-x\right)^{2}\pi }{4} have the same denominator, subtract them by subtracting their numerators.
\frac{16\pi -x^{2}\pi -16\pi +8x\pi -x^{2}\pi }{4}
Do the multiplications in 16\pi -x^{2}\pi -\left(4-x\right)^{2}\pi .
\frac{-2x^{2}\pi +8x\pi }{4}
Combine like terms in 16\pi -x^{2}\pi -16\pi +8x\pi -x^{2}\pi .
4\pi -\frac{x^{2}\pi }{4}-\left(\frac{4-x}{2}\right)^{2}\pi
Express \frac{x^{2}}{4}\pi as a single fraction.
\frac{4\times 4\pi }{4}-\frac{x^{2}\pi }{4}-\left(\frac{4-x}{2}\right)^{2}\pi
To add or subtract expressions, expand them to make their denominators the same. Multiply 4\pi times \frac{4}{4}.
\frac{4\times 4\pi -x^{2}\pi }{4}-\left(\frac{4-x}{2}\right)^{2}\pi
Since \frac{4\times 4\pi }{4} and \frac{x^{2}\pi }{4} have the same denominator, subtract them by subtracting their numerators.
\frac{16\pi -x^{2}\pi }{4}-\left(\frac{4-x}{2}\right)^{2}\pi
Do the multiplications in 4\times 4\pi -x^{2}\pi .
\frac{16\pi -x^{2}\pi }{4}-\frac{\left(4-x\right)^{2}}{2^{2}}\pi
To raise \frac{4-x}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{16\pi -x^{2}\pi }{4}-\frac{\left(4-x\right)^{2}\pi }{2^{2}}
Express \frac{\left(4-x\right)^{2}}{2^{2}}\pi as a single fraction.
\frac{16\pi -x^{2}\pi }{4}-\frac{\left(4-x\right)^{2}\pi }{4}
Calculate 2 to the power of 2 and get 4.
\frac{16\pi -x^{2}\pi -\left(4-x\right)^{2}\pi }{4}
Since \frac{16\pi -x^{2}\pi }{4} and \frac{\left(4-x\right)^{2}\pi }{4} have the same denominator, subtract them by subtracting their numerators.
\frac{16\pi -x^{2}\pi -16\pi +8x\pi -x^{2}\pi }{4}
Do the multiplications in 16\pi -x^{2}\pi -\left(4-x\right)^{2}\pi .
\frac{-2x^{2}\pi +8x\pi }{4}
Combine like terms in 16\pi -x^{2}\pi -16\pi +8x\pi -x^{2}\pi .