Evaluate
\frac{\pi x\left(4-x\right)}{2}
Expand
-\frac{\pi x^{2}}{2}+2\pi x
Graph
Share
Copied to clipboard
4\pi -\frac{x^{2}\pi }{4}-\left(\frac{4-x}{2}\right)^{2}\pi
Express \frac{x^{2}}{4}\pi as a single fraction.
\frac{4\times 4\pi }{4}-\frac{x^{2}\pi }{4}-\left(\frac{4-x}{2}\right)^{2}\pi
To add or subtract expressions, expand them to make their denominators the same. Multiply 4\pi times \frac{4}{4}.
\frac{4\times 4\pi -x^{2}\pi }{4}-\left(\frac{4-x}{2}\right)^{2}\pi
Since \frac{4\times 4\pi }{4} and \frac{x^{2}\pi }{4} have the same denominator, subtract them by subtracting their numerators.
\frac{16\pi -x^{2}\pi }{4}-\left(\frac{4-x}{2}\right)^{2}\pi
Do the multiplications in 4\times 4\pi -x^{2}\pi .
\frac{16\pi -x^{2}\pi }{4}-\frac{\left(4-x\right)^{2}}{2^{2}}\pi
To raise \frac{4-x}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{16\pi -x^{2}\pi }{4}-\frac{\left(4-x\right)^{2}\pi }{2^{2}}
Express \frac{\left(4-x\right)^{2}}{2^{2}}\pi as a single fraction.
\frac{16\pi -x^{2}\pi }{4}-\frac{\left(4-x\right)^{2}\pi }{4}
Calculate 2 to the power of 2 and get 4.
\frac{16\pi -x^{2}\pi -\left(4-x\right)^{2}\pi }{4}
Since \frac{16\pi -x^{2}\pi }{4} and \frac{\left(4-x\right)^{2}\pi }{4} have the same denominator, subtract them by subtracting their numerators.
\frac{16\pi -x^{2}\pi -16\pi +8x\pi -x^{2}\pi }{4}
Do the multiplications in 16\pi -x^{2}\pi -\left(4-x\right)^{2}\pi .
\frac{-2x^{2}\pi +8x\pi }{4}
Combine like terms in 16\pi -x^{2}\pi -16\pi +8x\pi -x^{2}\pi .
4\pi -\frac{x^{2}\pi }{4}-\left(\frac{4-x}{2}\right)^{2}\pi
Express \frac{x^{2}}{4}\pi as a single fraction.
\frac{4\times 4\pi }{4}-\frac{x^{2}\pi }{4}-\left(\frac{4-x}{2}\right)^{2}\pi
To add or subtract expressions, expand them to make their denominators the same. Multiply 4\pi times \frac{4}{4}.
\frac{4\times 4\pi -x^{2}\pi }{4}-\left(\frac{4-x}{2}\right)^{2}\pi
Since \frac{4\times 4\pi }{4} and \frac{x^{2}\pi }{4} have the same denominator, subtract them by subtracting their numerators.
\frac{16\pi -x^{2}\pi }{4}-\left(\frac{4-x}{2}\right)^{2}\pi
Do the multiplications in 4\times 4\pi -x^{2}\pi .
\frac{16\pi -x^{2}\pi }{4}-\frac{\left(4-x\right)^{2}}{2^{2}}\pi
To raise \frac{4-x}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{16\pi -x^{2}\pi }{4}-\frac{\left(4-x\right)^{2}\pi }{2^{2}}
Express \frac{\left(4-x\right)^{2}}{2^{2}}\pi as a single fraction.
\frac{16\pi -x^{2}\pi }{4}-\frac{\left(4-x\right)^{2}\pi }{4}
Calculate 2 to the power of 2 and get 4.
\frac{16\pi -x^{2}\pi -\left(4-x\right)^{2}\pi }{4}
Since \frac{16\pi -x^{2}\pi }{4} and \frac{\left(4-x\right)^{2}\pi }{4} have the same denominator, subtract them by subtracting their numerators.
\frac{16\pi -x^{2}\pi -16\pi +8x\pi -x^{2}\pi }{4}
Do the multiplications in 16\pi -x^{2}\pi -\left(4-x\right)^{2}\pi .
\frac{-2x^{2}\pi +8x\pi }{4}
Combine like terms in 16\pi -x^{2}\pi -16\pi +8x\pi -x^{2}\pi .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}