4 \frac { 5 } { 6 } + ( 2,75 - ( 6,5 x + 7,5 ) ) - 6,4 x
Evaluate
-\frac{129x}{10}+\frac{1}{12}
Expand
-\frac{129x}{10}+\frac{1}{12}
Graph
Share
Copied to clipboard
\frac{24+5}{6}+2,75-\left(6,5x+7,5\right)-6,4x
Multiply 4 and 6 to get 24.
\frac{29}{6}+2,75-\left(6,5x+7,5\right)-6,4x
Add 24 and 5 to get 29.
\frac{29}{6}+\frac{11}{4}-\left(6,5x+7,5\right)-6,4x
Convert decimal number 2,75 to fraction \frac{275}{100}. Reduce the fraction \frac{275}{100} to lowest terms by extracting and canceling out 25.
\frac{58}{12}+\frac{33}{12}-\left(6,5x+7,5\right)-6,4x
Least common multiple of 6 and 4 is 12. Convert \frac{29}{6} and \frac{11}{4} to fractions with denominator 12.
\frac{58+33}{12}-\left(6,5x+7,5\right)-6,4x
Since \frac{58}{12} and \frac{33}{12} have the same denominator, add them by adding their numerators.
\frac{91}{12}-\left(6,5x+7,5\right)-6,4x
Add 58 and 33 to get 91.
\frac{91}{12}-6,5x-7,5-6,4x
To find the opposite of 6,5x+7,5, find the opposite of each term.
\frac{91}{12}-6,5x-\frac{15}{2}-6,4x
Convert decimal number 7,5 to fraction \frac{75}{10}. Reduce the fraction \frac{75}{10} to lowest terms by extracting and canceling out 5.
\frac{91}{12}-6,5x-\frac{90}{12}-6,4x
Least common multiple of 12 and 2 is 12. Convert \frac{91}{12} and \frac{15}{2} to fractions with denominator 12.
\frac{91-90}{12}-6,5x-6,4x
Since \frac{91}{12} and \frac{90}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{12}-6,5x-6,4x
Subtract 90 from 91 to get 1.
\frac{1}{12}-12,9x
Combine -6,5x and -6,4x to get -12,9x.
\frac{24+5}{6}+2,75-\left(6,5x+7,5\right)-6,4x
Multiply 4 and 6 to get 24.
\frac{29}{6}+2,75-\left(6,5x+7,5\right)-6,4x
Add 24 and 5 to get 29.
\frac{29}{6}+\frac{11}{4}-\left(6,5x+7,5\right)-6,4x
Convert decimal number 2,75 to fraction \frac{275}{100}. Reduce the fraction \frac{275}{100} to lowest terms by extracting and canceling out 25.
\frac{58}{12}+\frac{33}{12}-\left(6,5x+7,5\right)-6,4x
Least common multiple of 6 and 4 is 12. Convert \frac{29}{6} and \frac{11}{4} to fractions with denominator 12.
\frac{58+33}{12}-\left(6,5x+7,5\right)-6,4x
Since \frac{58}{12} and \frac{33}{12} have the same denominator, add them by adding their numerators.
\frac{91}{12}-\left(6,5x+7,5\right)-6,4x
Add 58 and 33 to get 91.
\frac{91}{12}-6,5x-7,5-6,4x
To find the opposite of 6,5x+7,5, find the opposite of each term.
\frac{91}{12}-6,5x-\frac{15}{2}-6,4x
Convert decimal number 7,5 to fraction \frac{75}{10}. Reduce the fraction \frac{75}{10} to lowest terms by extracting and canceling out 5.
\frac{91}{12}-6,5x-\frac{90}{12}-6,4x
Least common multiple of 12 and 2 is 12. Convert \frac{91}{12} and \frac{15}{2} to fractions with denominator 12.
\frac{91-90}{12}-6,5x-6,4x
Since \frac{91}{12} and \frac{90}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{12}-6,5x-6,4x
Subtract 90 from 91 to get 1.
\frac{1}{12}-12,9x
Combine -6,5x and -6,4x to get -12,9x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}