Solve for t
t=\frac{\sqrt{433}-19}{12}\approx 0.150721004
t=\frac{-\sqrt{433}-19}{12}\approx -3.317387671
Share
Copied to clipboard
36t^{2}+114t-2\times 9=0
Do the multiplications.
36t^{2}+114t-18=0
Multiply 2 and 9 to get 18.
t=\frac{-114±\sqrt{114^{2}-4\times 36\left(-18\right)}}{2\times 36}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 36 for a, 114 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-114±\sqrt{12996-4\times 36\left(-18\right)}}{2\times 36}
Square 114.
t=\frac{-114±\sqrt{12996-144\left(-18\right)}}{2\times 36}
Multiply -4 times 36.
t=\frac{-114±\sqrt{12996+2592}}{2\times 36}
Multiply -144 times -18.
t=\frac{-114±\sqrt{15588}}{2\times 36}
Add 12996 to 2592.
t=\frac{-114±6\sqrt{433}}{2\times 36}
Take the square root of 15588.
t=\frac{-114±6\sqrt{433}}{72}
Multiply 2 times 36.
t=\frac{6\sqrt{433}-114}{72}
Now solve the equation t=\frac{-114±6\sqrt{433}}{72} when ± is plus. Add -114 to 6\sqrt{433}.
t=\frac{\sqrt{433}-19}{12}
Divide -114+6\sqrt{433} by 72.
t=\frac{-6\sqrt{433}-114}{72}
Now solve the equation t=\frac{-114±6\sqrt{433}}{72} when ± is minus. Subtract 6\sqrt{433} from -114.
t=\frac{-\sqrt{433}-19}{12}
Divide -114-6\sqrt{433} by 72.
t=\frac{\sqrt{433}-19}{12} t=\frac{-\sqrt{433}-19}{12}
The equation is now solved.
36t^{2}+114t-2\times 9=0
Do the multiplications.
36t^{2}+114t-18=0
Multiply 2 and 9 to get 18.
36t^{2}+114t=18
Add 18 to both sides. Anything plus zero gives itself.
\frac{36t^{2}+114t}{36}=\frac{18}{36}
Divide both sides by 36.
t^{2}+\frac{114}{36}t=\frac{18}{36}
Dividing by 36 undoes the multiplication by 36.
t^{2}+\frac{19}{6}t=\frac{18}{36}
Reduce the fraction \frac{114}{36} to lowest terms by extracting and canceling out 6.
t^{2}+\frac{19}{6}t=\frac{1}{2}
Reduce the fraction \frac{18}{36} to lowest terms by extracting and canceling out 18.
t^{2}+\frac{19}{6}t+\left(\frac{19}{12}\right)^{2}=\frac{1}{2}+\left(\frac{19}{12}\right)^{2}
Divide \frac{19}{6}, the coefficient of the x term, by 2 to get \frac{19}{12}. Then add the square of \frac{19}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{19}{6}t+\frac{361}{144}=\frac{1}{2}+\frac{361}{144}
Square \frac{19}{12} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{19}{6}t+\frac{361}{144}=\frac{433}{144}
Add \frac{1}{2} to \frac{361}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{19}{12}\right)^{2}=\frac{433}{144}
Factor t^{2}+\frac{19}{6}t+\frac{361}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{19}{12}\right)^{2}}=\sqrt{\frac{433}{144}}
Take the square root of both sides of the equation.
t+\frac{19}{12}=\frac{\sqrt{433}}{12} t+\frac{19}{12}=-\frac{\sqrt{433}}{12}
Simplify.
t=\frac{\sqrt{433}-19}{12} t=\frac{-\sqrt{433}-19}{12}
Subtract \frac{19}{12} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}