Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(4y+4\left(-\frac{1}{2}\right)x\right)\left(y+\frac{1}{2}x\right)-9\left(y-\frac{1}{3}x\right)
Use the distributive property to multiply 4 by y-\frac{1}{2}x.
\left(4y+\frac{4\left(-1\right)}{2}x\right)\left(y+\frac{1}{2}x\right)-9\left(y-\frac{1}{3}x\right)
Express 4\left(-\frac{1}{2}\right) as a single fraction.
\left(4y+\frac{-4}{2}x\right)\left(y+\frac{1}{2}x\right)-9\left(y-\frac{1}{3}x\right)
Multiply 4 and -1 to get -4.
\left(4y-2x\right)\left(y+\frac{1}{2}x\right)-9\left(y-\frac{1}{3}x\right)
Divide -4 by 2 to get -2.
4y^{2}+4y\times \frac{1}{2}x-2xy-2x\times \frac{1}{2}x-9\left(y-\frac{1}{3}x\right)
Apply the distributive property by multiplying each term of 4y-2x by each term of y+\frac{1}{2}x.
4y^{2}+4y\times \frac{1}{2}x-2xy-2x^{2}\times \frac{1}{2}-9\left(y-\frac{1}{3}x\right)
Multiply x and x to get x^{2}.
4y^{2}+\frac{4}{2}yx-2xy-2x^{2}\times \frac{1}{2}-9\left(y-\frac{1}{3}x\right)
Multiply 4 and \frac{1}{2} to get \frac{4}{2}.
4y^{2}+2yx-2xy-2x^{2}\times \frac{1}{2}-9\left(y-\frac{1}{3}x\right)
Divide 4 by 2 to get 2.
4y^{2}-2x^{2}\times \frac{1}{2}-9\left(y-\frac{1}{3}x\right)
Combine 2yx and -2xy to get 0.
4y^{2}-x^{2}-9\left(y-\frac{1}{3}x\right)
Multiply -2 times \frac{1}{2}.
4y^{2}-x^{2}-9y-9\left(-\frac{1}{3}\right)x
Use the distributive property to multiply -9 by y-\frac{1}{3}x.
4y^{2}-x^{2}-9y+\frac{-9\left(-1\right)}{3}x
Express -9\left(-\frac{1}{3}\right) as a single fraction.
4y^{2}-x^{2}-9y+\frac{9}{3}x
Multiply -9 and -1 to get 9.
4y^{2}-x^{2}-9y+3x
Divide 9 by 3 to get 3.
\left(4y+4\left(-\frac{1}{2}\right)x\right)\left(y+\frac{1}{2}x\right)-9\left(y-\frac{1}{3}x\right)
Use the distributive property to multiply 4 by y-\frac{1}{2}x.
\left(4y+\frac{4\left(-1\right)}{2}x\right)\left(y+\frac{1}{2}x\right)-9\left(y-\frac{1}{3}x\right)
Express 4\left(-\frac{1}{2}\right) as a single fraction.
\left(4y+\frac{-4}{2}x\right)\left(y+\frac{1}{2}x\right)-9\left(y-\frac{1}{3}x\right)
Multiply 4 and -1 to get -4.
\left(4y-2x\right)\left(y+\frac{1}{2}x\right)-9\left(y-\frac{1}{3}x\right)
Divide -4 by 2 to get -2.
4y^{2}+4y\times \frac{1}{2}x-2xy-2x\times \frac{1}{2}x-9\left(y-\frac{1}{3}x\right)
Apply the distributive property by multiplying each term of 4y-2x by each term of y+\frac{1}{2}x.
4y^{2}+4y\times \frac{1}{2}x-2xy-2x^{2}\times \frac{1}{2}-9\left(y-\frac{1}{3}x\right)
Multiply x and x to get x^{2}.
4y^{2}+\frac{4}{2}yx-2xy-2x^{2}\times \frac{1}{2}-9\left(y-\frac{1}{3}x\right)
Multiply 4 and \frac{1}{2} to get \frac{4}{2}.
4y^{2}+2yx-2xy-2x^{2}\times \frac{1}{2}-9\left(y-\frac{1}{3}x\right)
Divide 4 by 2 to get 2.
4y^{2}-2x^{2}\times \frac{1}{2}-9\left(y-\frac{1}{3}x\right)
Combine 2yx and -2xy to get 0.
4y^{2}-x^{2}-9\left(y-\frac{1}{3}x\right)
Multiply -2 times \frac{1}{2}.
4y^{2}-x^{2}-9y-9\left(-\frac{1}{3}\right)x
Use the distributive property to multiply -9 by y-\frac{1}{3}x.
4y^{2}-x^{2}-9y+\frac{-9\left(-1\right)}{3}x
Express -9\left(-\frac{1}{3}\right) as a single fraction.
4y^{2}-x^{2}-9y+\frac{9}{3}x
Multiply -9 and -1 to get 9.
4y^{2}-x^{2}-9y+3x
Divide 9 by 3 to get 3.