Evaluate
-x^{2}+3x+4y^{2}-9y
Expand
-x^{2}+3x+4y^{2}-9y
Share
Copied to clipboard
\left(4y+4\left(-\frac{1}{2}\right)x\right)\left(y+\frac{1}{2}x\right)-9\left(y-\frac{1}{3}x\right)
Use the distributive property to multiply 4 by y-\frac{1}{2}x.
\left(4y+\frac{4\left(-1\right)}{2}x\right)\left(y+\frac{1}{2}x\right)-9\left(y-\frac{1}{3}x\right)
Express 4\left(-\frac{1}{2}\right) as a single fraction.
\left(4y+\frac{-4}{2}x\right)\left(y+\frac{1}{2}x\right)-9\left(y-\frac{1}{3}x\right)
Multiply 4 and -1 to get -4.
\left(4y-2x\right)\left(y+\frac{1}{2}x\right)-9\left(y-\frac{1}{3}x\right)
Divide -4 by 2 to get -2.
4y^{2}+4y\times \frac{1}{2}x-2xy-2x\times \frac{1}{2}x-9\left(y-\frac{1}{3}x\right)
Apply the distributive property by multiplying each term of 4y-2x by each term of y+\frac{1}{2}x.
4y^{2}+4y\times \frac{1}{2}x-2xy-2x^{2}\times \frac{1}{2}-9\left(y-\frac{1}{3}x\right)
Multiply x and x to get x^{2}.
4y^{2}+\frac{4}{2}yx-2xy-2x^{2}\times \frac{1}{2}-9\left(y-\frac{1}{3}x\right)
Multiply 4 and \frac{1}{2} to get \frac{4}{2}.
4y^{2}+2yx-2xy-2x^{2}\times \frac{1}{2}-9\left(y-\frac{1}{3}x\right)
Divide 4 by 2 to get 2.
4y^{2}-2x^{2}\times \frac{1}{2}-9\left(y-\frac{1}{3}x\right)
Combine 2yx and -2xy to get 0.
4y^{2}-x^{2}-9\left(y-\frac{1}{3}x\right)
Multiply -2 times \frac{1}{2}.
4y^{2}-x^{2}-9y-9\left(-\frac{1}{3}\right)x
Use the distributive property to multiply -9 by y-\frac{1}{3}x.
4y^{2}-x^{2}-9y+\frac{-9\left(-1\right)}{3}x
Express -9\left(-\frac{1}{3}\right) as a single fraction.
4y^{2}-x^{2}-9y+\frac{9}{3}x
Multiply -9 and -1 to get 9.
4y^{2}-x^{2}-9y+3x
Divide 9 by 3 to get 3.
\left(4y+4\left(-\frac{1}{2}\right)x\right)\left(y+\frac{1}{2}x\right)-9\left(y-\frac{1}{3}x\right)
Use the distributive property to multiply 4 by y-\frac{1}{2}x.
\left(4y+\frac{4\left(-1\right)}{2}x\right)\left(y+\frac{1}{2}x\right)-9\left(y-\frac{1}{3}x\right)
Express 4\left(-\frac{1}{2}\right) as a single fraction.
\left(4y+\frac{-4}{2}x\right)\left(y+\frac{1}{2}x\right)-9\left(y-\frac{1}{3}x\right)
Multiply 4 and -1 to get -4.
\left(4y-2x\right)\left(y+\frac{1}{2}x\right)-9\left(y-\frac{1}{3}x\right)
Divide -4 by 2 to get -2.
4y^{2}+4y\times \frac{1}{2}x-2xy-2x\times \frac{1}{2}x-9\left(y-\frac{1}{3}x\right)
Apply the distributive property by multiplying each term of 4y-2x by each term of y+\frac{1}{2}x.
4y^{2}+4y\times \frac{1}{2}x-2xy-2x^{2}\times \frac{1}{2}-9\left(y-\frac{1}{3}x\right)
Multiply x and x to get x^{2}.
4y^{2}+\frac{4}{2}yx-2xy-2x^{2}\times \frac{1}{2}-9\left(y-\frac{1}{3}x\right)
Multiply 4 and \frac{1}{2} to get \frac{4}{2}.
4y^{2}+2yx-2xy-2x^{2}\times \frac{1}{2}-9\left(y-\frac{1}{3}x\right)
Divide 4 by 2 to get 2.
4y^{2}-2x^{2}\times \frac{1}{2}-9\left(y-\frac{1}{3}x\right)
Combine 2yx and -2xy to get 0.
4y^{2}-x^{2}-9\left(y-\frac{1}{3}x\right)
Multiply -2 times \frac{1}{2}.
4y^{2}-x^{2}-9y-9\left(-\frac{1}{3}\right)x
Use the distributive property to multiply -9 by y-\frac{1}{3}x.
4y^{2}-x^{2}-9y+\frac{-9\left(-1\right)}{3}x
Express -9\left(-\frac{1}{3}\right) as a single fraction.
4y^{2}-x^{2}-9y+\frac{9}{3}x
Multiply -9 and -1 to get 9.
4y^{2}-x^{2}-9y+3x
Divide 9 by 3 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}