Solve for y
y = -\frac{47}{10} = -4\frac{7}{10} = -4.7
Graph
Share
Copied to clipboard
20y+12+5\left(7-2y\right)=0
Use the distributive property to multiply 4 by 5y+3.
20y+12+35-10y=0
Use the distributive property to multiply 5 by 7-2y.
20y+47-10y=0
Add 12 and 35 to get 47.
10y+47=0
Combine 20y and -10y to get 10y.
10y=-47
Subtract 47 from both sides. Anything subtracted from zero gives its negation.
y=\frac{-47}{10}
Divide both sides by 10.
y=-\frac{47}{10}
Fraction \frac{-47}{10} can be rewritten as -\frac{47}{10} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}