Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

16+\left(8-x\right)^{2}+\left(4+x\right)^{2}=88
Calculate 4 to the power of 2 and get 16.
16+64-16x+x^{2}+\left(4+x\right)^{2}=88
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-x\right)^{2}.
80-16x+x^{2}+\left(4+x\right)^{2}=88
Add 16 and 64 to get 80.
80-16x+x^{2}+16+8x+x^{2}=88
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+x\right)^{2}.
96-16x+x^{2}+8x+x^{2}=88
Add 80 and 16 to get 96.
96-8x+x^{2}+x^{2}=88
Combine -16x and 8x to get -8x.
96-8x+2x^{2}=88
Combine x^{2} and x^{2} to get 2x^{2}.
96-8x+2x^{2}-88=0
Subtract 88 from both sides.
8-8x+2x^{2}=0
Subtract 88 from 96 to get 8.
4-4x+x^{2}=0
Divide both sides by 2.
x^{2}-4x+4=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-4 ab=1\times 4=4
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+4. To find a and b, set up a system to be solved.
-1,-4 -2,-2
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 4.
-1-4=-5 -2-2=-4
Calculate the sum for each pair.
a=-2 b=-2
The solution is the pair that gives sum -4.
\left(x^{2}-2x\right)+\left(-2x+4\right)
Rewrite x^{2}-4x+4 as \left(x^{2}-2x\right)+\left(-2x+4\right).
x\left(x-2\right)-2\left(x-2\right)
Factor out x in the first and -2 in the second group.
\left(x-2\right)\left(x-2\right)
Factor out common term x-2 by using distributive property.
\left(x-2\right)^{2}
Rewrite as a binomial square.
x=2
To find equation solution, solve x-2=0.
16+\left(8-x\right)^{2}+\left(4+x\right)^{2}=88
Calculate 4 to the power of 2 and get 16.
16+64-16x+x^{2}+\left(4+x\right)^{2}=88
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-x\right)^{2}.
80-16x+x^{2}+\left(4+x\right)^{2}=88
Add 16 and 64 to get 80.
80-16x+x^{2}+16+8x+x^{2}=88
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+x\right)^{2}.
96-16x+x^{2}+8x+x^{2}=88
Add 80 and 16 to get 96.
96-8x+x^{2}+x^{2}=88
Combine -16x and 8x to get -8x.
96-8x+2x^{2}=88
Combine x^{2} and x^{2} to get 2x^{2}.
96-8x+2x^{2}-88=0
Subtract 88 from both sides.
8-8x+2x^{2}=0
Subtract 88 from 96 to get 8.
2x^{2}-8x+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\times 8}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -8 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\times 8}}{2\times 2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\times 8}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2\times 2}
Multiply -8 times 8.
x=\frac{-\left(-8\right)±\sqrt{0}}{2\times 2}
Add 64 to -64.
x=-\frac{-8}{2\times 2}
Take the square root of 0.
x=\frac{8}{2\times 2}
The opposite of -8 is 8.
x=\frac{8}{4}
Multiply 2 times 2.
x=2
Divide 8 by 4.
16+\left(8-x\right)^{2}+\left(4+x\right)^{2}=88
Calculate 4 to the power of 2 and get 16.
16+64-16x+x^{2}+\left(4+x\right)^{2}=88
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-x\right)^{2}.
80-16x+x^{2}+\left(4+x\right)^{2}=88
Add 16 and 64 to get 80.
80-16x+x^{2}+16+8x+x^{2}=88
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+x\right)^{2}.
96-16x+x^{2}+8x+x^{2}=88
Add 80 and 16 to get 96.
96-8x+x^{2}+x^{2}=88
Combine -16x and 8x to get -8x.
96-8x+2x^{2}=88
Combine x^{2} and x^{2} to get 2x^{2}.
-8x+2x^{2}=88-96
Subtract 96 from both sides.
-8x+2x^{2}=-8
Subtract 96 from 88 to get -8.
2x^{2}-8x=-8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-8x}{2}=-\frac{8}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{8}{2}\right)x=-\frac{8}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-4x=-\frac{8}{2}
Divide -8 by 2.
x^{2}-4x=-4
Divide -8 by 2.
x^{2}-4x+\left(-2\right)^{2}=-4+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-4+4
Square -2.
x^{2}-4x+4=0
Add -4 to 4.
\left(x-2\right)^{2}=0
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-2=0 x-2=0
Simplify.
x=2 x=2
Add 2 to both sides of the equation.
x=2
The equation is now solved. Solutions are the same.