Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4=x^{2}+16x
Multiply 2 and 8 to get 16.
x^{2}+16x=4
Swap sides so that all variable terms are on the left hand side.
x^{2}+16x-4=0
Subtract 4 from both sides.
x=\frac{-16±\sqrt{16^{2}-4\left(-4\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 16 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-4\right)}}{2}
Square 16.
x=\frac{-16±\sqrt{256+16}}{2}
Multiply -4 times -4.
x=\frac{-16±\sqrt{272}}{2}
Add 256 to 16.
x=\frac{-16±4\sqrt{17}}{2}
Take the square root of 272.
x=\frac{4\sqrt{17}-16}{2}
Now solve the equation x=\frac{-16±4\sqrt{17}}{2} when ± is plus. Add -16 to 4\sqrt{17}.
x=2\sqrt{17}-8
Divide -16+4\sqrt{17} by 2.
x=\frac{-4\sqrt{17}-16}{2}
Now solve the equation x=\frac{-16±4\sqrt{17}}{2} when ± is minus. Subtract 4\sqrt{17} from -16.
x=-2\sqrt{17}-8
Divide -16-4\sqrt{17} by 2.
x=2\sqrt{17}-8 x=-2\sqrt{17}-8
The equation is now solved.
4=x^{2}+16x
Multiply 2 and 8 to get 16.
x^{2}+16x=4
Swap sides so that all variable terms are on the left hand side.
x^{2}+16x+8^{2}=4+8^{2}
Divide 16, the coefficient of the x term, by 2 to get 8. Then add the square of 8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+16x+64=4+64
Square 8.
x^{2}+16x+64=68
Add 4 to 64.
\left(x+8\right)^{2}=68
Factor x^{2}+16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+8\right)^{2}}=\sqrt{68}
Take the square root of both sides of the equation.
x+8=2\sqrt{17} x+8=-2\sqrt{17}
Simplify.
x=2\sqrt{17}-8 x=-2\sqrt{17}-8
Subtract 8 from both sides of the equation.