Solve for y
y=\frac{\sqrt{654}-23}{25}\approx 0.102936948
y=\frac{-\sqrt{654}-23}{25}\approx -1.942936948
Graph
Share
Copied to clipboard
20y^{2}+36.8y=4
Swap sides so that all variable terms are on the left hand side.
20y^{2}+36.8y-4=0
Subtract 4 from both sides.
y=\frac{-36.8±\sqrt{36.8^{2}-4\times 20\left(-4\right)}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, 36.8 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-36.8±\sqrt{1354.24-4\times 20\left(-4\right)}}{2\times 20}
Square 36.8 by squaring both the numerator and the denominator of the fraction.
y=\frac{-36.8±\sqrt{1354.24-80\left(-4\right)}}{2\times 20}
Multiply -4 times 20.
y=\frac{-36.8±\sqrt{1354.24+320}}{2\times 20}
Multiply -80 times -4.
y=\frac{-36.8±\sqrt{1674.24}}{2\times 20}
Add 1354.24 to 320.
y=\frac{-36.8±\frac{8\sqrt{654}}{5}}{2\times 20}
Take the square root of 1674.24.
y=\frac{-36.8±\frac{8\sqrt{654}}{5}}{40}
Multiply 2 times 20.
y=\frac{8\sqrt{654}-184}{5\times 40}
Now solve the equation y=\frac{-36.8±\frac{8\sqrt{654}}{5}}{40} when ± is plus. Add -36.8 to \frac{8\sqrt{654}}{5}.
y=\frac{\sqrt{654}-23}{25}
Divide \frac{-184+8\sqrt{654}}{5} by 40.
y=\frac{-8\sqrt{654}-184}{5\times 40}
Now solve the equation y=\frac{-36.8±\frac{8\sqrt{654}}{5}}{40} when ± is minus. Subtract \frac{8\sqrt{654}}{5} from -36.8.
y=\frac{-\sqrt{654}-23}{25}
Divide \frac{-184-8\sqrt{654}}{5} by 40.
y=\frac{\sqrt{654}-23}{25} y=\frac{-\sqrt{654}-23}{25}
The equation is now solved.
20y^{2}+36.8y=4
Swap sides so that all variable terms are on the left hand side.
\frac{20y^{2}+36.8y}{20}=\frac{4}{20}
Divide both sides by 20.
y^{2}+\frac{36.8}{20}y=\frac{4}{20}
Dividing by 20 undoes the multiplication by 20.
y^{2}+1.84y=\frac{4}{20}
Divide 36.8 by 20.
y^{2}+1.84y=\frac{1}{5}
Reduce the fraction \frac{4}{20} to lowest terms by extracting and canceling out 4.
y^{2}+1.84y+0.92^{2}=\frac{1}{5}+0.92^{2}
Divide 1.84, the coefficient of the x term, by 2 to get 0.92. Then add the square of 0.92 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+1.84y+0.8464=\frac{1}{5}+0.8464
Square 0.92 by squaring both the numerator and the denominator of the fraction.
y^{2}+1.84y+0.8464=\frac{654}{625}
Add \frac{1}{5} to 0.8464 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+0.92\right)^{2}=\frac{654}{625}
Factor y^{2}+1.84y+0.8464. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+0.92\right)^{2}}=\sqrt{\frac{654}{625}}
Take the square root of both sides of the equation.
y+0.92=\frac{\sqrt{654}}{25} y+0.92=-\frac{\sqrt{654}}{25}
Simplify.
y=\frac{\sqrt{654}-23}{25} y=\frac{-\sqrt{654}-23}{25}
Subtract 0.92 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}