Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4-x=\sqrt{26+5x}
Subtract x from both sides of the equation.
\left(4-x\right)^{2}=\left(\sqrt{26+5x}\right)^{2}
Square both sides of the equation.
16-8x+x^{2}=\left(\sqrt{26+5x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
16-8x+x^{2}=26+5x
Calculate \sqrt{26+5x} to the power of 2 and get 26+5x.
16-8x+x^{2}-26=5x
Subtract 26 from both sides.
-10-8x+x^{2}=5x
Subtract 26 from 16 to get -10.
-10-8x+x^{2}-5x=0
Subtract 5x from both sides.
-10-13x+x^{2}=0
Combine -8x and -5x to get -13x.
x^{2}-13x-10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\left(-10\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -13 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±\sqrt{169-4\left(-10\right)}}{2}
Square -13.
x=\frac{-\left(-13\right)±\sqrt{169+40}}{2}
Multiply -4 times -10.
x=\frac{-\left(-13\right)±\sqrt{209}}{2}
Add 169 to 40.
x=\frac{13±\sqrt{209}}{2}
The opposite of -13 is 13.
x=\frac{\sqrt{209}+13}{2}
Now solve the equation x=\frac{13±\sqrt{209}}{2} when ± is plus. Add 13 to \sqrt{209}.
x=\frac{13-\sqrt{209}}{2}
Now solve the equation x=\frac{13±\sqrt{209}}{2} when ± is minus. Subtract \sqrt{209} from 13.
x=\frac{\sqrt{209}+13}{2} x=\frac{13-\sqrt{209}}{2}
The equation is now solved.
4=\sqrt{26+5\times \frac{\sqrt{209}+13}{2}}+\frac{\sqrt{209}+13}{2}
Substitute \frac{\sqrt{209}+13}{2} for x in the equation 4=\sqrt{26+5x}+x.
4=9+209^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{209}+13}{2} does not satisfy the equation.
4=\sqrt{26+5\times \frac{13-\sqrt{209}}{2}}+\frac{13-\sqrt{209}}{2}
Substitute \frac{13-\sqrt{209}}{2} for x in the equation 4=\sqrt{26+5x}+x.
4=4
Simplify. The value x=\frac{13-\sqrt{209}}{2} satisfies the equation.
x=\frac{13-\sqrt{209}}{2}
Equation 4-x=\sqrt{5x+26} has a unique solution.