Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{5}{2}x^{2}\times 4+5x\left(-\frac{4}{5}\right)=5\times 3
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5x, the least common multiple of 5,x.
10x^{2}+5x\left(-\frac{4}{5}\right)=5\times 3
Multiply \frac{5}{2} and 4 to get 10.
10x^{2}-4x=5\times 3
Multiply 5 and -\frac{4}{5} to get -4.
10x^{2}-4x=15
Multiply 5 and 3 to get 15.
10x^{2}-4x-15=0
Subtract 15 from both sides.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 10\left(-15\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -4 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 10\left(-15\right)}}{2\times 10}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-40\left(-15\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-4\right)±\sqrt{16+600}}{2\times 10}
Multiply -40 times -15.
x=\frac{-\left(-4\right)±\sqrt{616}}{2\times 10}
Add 16 to 600.
x=\frac{-\left(-4\right)±2\sqrt{154}}{2\times 10}
Take the square root of 616.
x=\frac{4±2\sqrt{154}}{2\times 10}
The opposite of -4 is 4.
x=\frac{4±2\sqrt{154}}{20}
Multiply 2 times 10.
x=\frac{2\sqrt{154}+4}{20}
Now solve the equation x=\frac{4±2\sqrt{154}}{20} when ± is plus. Add 4 to 2\sqrt{154}.
x=\frac{\sqrt{154}}{10}+\frac{1}{5}
Divide 4+2\sqrt{154} by 20.
x=\frac{4-2\sqrt{154}}{20}
Now solve the equation x=\frac{4±2\sqrt{154}}{20} when ± is minus. Subtract 2\sqrt{154} from 4.
x=-\frac{\sqrt{154}}{10}+\frac{1}{5}
Divide 4-2\sqrt{154} by 20.
x=\frac{\sqrt{154}}{10}+\frac{1}{5} x=-\frac{\sqrt{154}}{10}+\frac{1}{5}
The equation is now solved.
\frac{5}{2}x^{2}\times 4+5x\left(-\frac{4}{5}\right)=5\times 3
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5x, the least common multiple of 5,x.
10x^{2}+5x\left(-\frac{4}{5}\right)=5\times 3
Multiply \frac{5}{2} and 4 to get 10.
10x^{2}-4x=5\times 3
Multiply 5 and -\frac{4}{5} to get -4.
10x^{2}-4x=15
Multiply 5 and 3 to get 15.
\frac{10x^{2}-4x}{10}=\frac{15}{10}
Divide both sides by 10.
x^{2}+\left(-\frac{4}{10}\right)x=\frac{15}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-\frac{2}{5}x=\frac{15}{10}
Reduce the fraction \frac{-4}{10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{2}{5}x=\frac{3}{2}
Reduce the fraction \frac{15}{10} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=\frac{3}{2}+\left(-\frac{1}{5}\right)^{2}
Divide -\frac{2}{5}, the coefficient of the x term, by 2 to get -\frac{1}{5}. Then add the square of -\frac{1}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{3}{2}+\frac{1}{25}
Square -\frac{1}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{77}{50}
Add \frac{3}{2} to \frac{1}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{5}\right)^{2}=\frac{77}{50}
Factor x^{2}-\frac{2}{5}x+\frac{1}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{\frac{77}{50}}
Take the square root of both sides of the equation.
x-\frac{1}{5}=\frac{\sqrt{154}}{10} x-\frac{1}{5}=-\frac{\sqrt{154}}{10}
Simplify.
x=\frac{\sqrt{154}}{10}+\frac{1}{5} x=-\frac{\sqrt{154}}{10}+\frac{1}{5}
Add \frac{1}{5} to both sides of the equation.