Skip to main content
Solve for w
Tick mark Image

Similar Problems from Web Search

Share

14+w^{2}-6w+w^{2}=18
Add 4 and 10 to get 14.
14+2w^{2}-6w=18
Combine w^{2} and w^{2} to get 2w^{2}.
14+2w^{2}-6w-18=0
Subtract 18 from both sides.
-4+2w^{2}-6w=0
Subtract 18 from 14 to get -4.
2w^{2}-6w-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
w=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 2\left(-4\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -6 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-\left(-6\right)±\sqrt{36-4\times 2\left(-4\right)}}{2\times 2}
Square -6.
w=\frac{-\left(-6\right)±\sqrt{36-8\left(-4\right)}}{2\times 2}
Multiply -4 times 2.
w=\frac{-\left(-6\right)±\sqrt{36+32}}{2\times 2}
Multiply -8 times -4.
w=\frac{-\left(-6\right)±\sqrt{68}}{2\times 2}
Add 36 to 32.
w=\frac{-\left(-6\right)±2\sqrt{17}}{2\times 2}
Take the square root of 68.
w=\frac{6±2\sqrt{17}}{2\times 2}
The opposite of -6 is 6.
w=\frac{6±2\sqrt{17}}{4}
Multiply 2 times 2.
w=\frac{2\sqrt{17}+6}{4}
Now solve the equation w=\frac{6±2\sqrt{17}}{4} when ± is plus. Add 6 to 2\sqrt{17}.
w=\frac{\sqrt{17}+3}{2}
Divide 6+2\sqrt{17} by 4.
w=\frac{6-2\sqrt{17}}{4}
Now solve the equation w=\frac{6±2\sqrt{17}}{4} when ± is minus. Subtract 2\sqrt{17} from 6.
w=\frac{3-\sqrt{17}}{2}
Divide 6-2\sqrt{17} by 4.
w=\frac{\sqrt{17}+3}{2} w=\frac{3-\sqrt{17}}{2}
The equation is now solved.
14+w^{2}-6w+w^{2}=18
Add 4 and 10 to get 14.
14+2w^{2}-6w=18
Combine w^{2} and w^{2} to get 2w^{2}.
2w^{2}-6w=18-14
Subtract 14 from both sides.
2w^{2}-6w=4
Subtract 14 from 18 to get 4.
\frac{2w^{2}-6w}{2}=\frac{4}{2}
Divide both sides by 2.
w^{2}+\left(-\frac{6}{2}\right)w=\frac{4}{2}
Dividing by 2 undoes the multiplication by 2.
w^{2}-3w=\frac{4}{2}
Divide -6 by 2.
w^{2}-3w=2
Divide 4 by 2.
w^{2}-3w+\left(-\frac{3}{2}\right)^{2}=2+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
w^{2}-3w+\frac{9}{4}=2+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
w^{2}-3w+\frac{9}{4}=\frac{17}{4}
Add 2 to \frac{9}{4}.
\left(w-\frac{3}{2}\right)^{2}=\frac{17}{4}
Factor w^{2}-3w+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w-\frac{3}{2}\right)^{2}}=\sqrt{\frac{17}{4}}
Take the square root of both sides of the equation.
w-\frac{3}{2}=\frac{\sqrt{17}}{2} w-\frac{3}{2}=-\frac{\sqrt{17}}{2}
Simplify.
w=\frac{\sqrt{17}+3}{2} w=\frac{3-\sqrt{17}}{2}
Add \frac{3}{2} to both sides of the equation.