Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

4+4-4x+x^{2}+36+x^{2}=20
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-x\right)^{2}.
8-4x+x^{2}+36+x^{2}=20
Add 4 and 4 to get 8.
44-4x+x^{2}+x^{2}=20
Add 8 and 36 to get 44.
44-4x+2x^{2}=20
Combine x^{2} and x^{2} to get 2x^{2}.
44-4x+2x^{2}-20=0
Subtract 20 from both sides.
24-4x+2x^{2}=0
Subtract 20 from 44 to get 24.
2x^{2}-4x+24=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\times 24}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -4 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\times 24}}{2\times 2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-8\times 24}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-4\right)±\sqrt{16-192}}{2\times 2}
Multiply -8 times 24.
x=\frac{-\left(-4\right)±\sqrt{-176}}{2\times 2}
Add 16 to -192.
x=\frac{-\left(-4\right)±4\sqrt{11}i}{2\times 2}
Take the square root of -176.
x=\frac{4±4\sqrt{11}i}{2\times 2}
The opposite of -4 is 4.
x=\frac{4±4\sqrt{11}i}{4}
Multiply 2 times 2.
x=\frac{4+4\sqrt{11}i}{4}
Now solve the equation x=\frac{4±4\sqrt{11}i}{4} when ± is plus. Add 4 to 4i\sqrt{11}.
x=1+\sqrt{11}i
Divide 4+4i\sqrt{11} by 4.
x=\frac{-4\sqrt{11}i+4}{4}
Now solve the equation x=\frac{4±4\sqrt{11}i}{4} when ± is minus. Subtract 4i\sqrt{11} from 4.
x=-\sqrt{11}i+1
Divide 4-4i\sqrt{11} by 4.
x=1+\sqrt{11}i x=-\sqrt{11}i+1
The equation is now solved.
4+4-4x+x^{2}+36+x^{2}=20
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-x\right)^{2}.
8-4x+x^{2}+36+x^{2}=20
Add 4 and 4 to get 8.
44-4x+x^{2}+x^{2}=20
Add 8 and 36 to get 44.
44-4x+2x^{2}=20
Combine x^{2} and x^{2} to get 2x^{2}.
-4x+2x^{2}=20-44
Subtract 44 from both sides.
-4x+2x^{2}=-24
Subtract 44 from 20 to get -24.
2x^{2}-4x=-24
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-4x}{2}=-\frac{24}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{4}{2}\right)x=-\frac{24}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-2x=-\frac{24}{2}
Divide -4 by 2.
x^{2}-2x=-12
Divide -24 by 2.
x^{2}-2x+1=-12+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=-11
Add -12 to 1.
\left(x-1\right)^{2}=-11
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-11}
Take the square root of both sides of the equation.
x-1=\sqrt{11}i x-1=-\sqrt{11}i
Simplify.
x=1+\sqrt{11}i x=-\sqrt{11}i+1
Add 1 to both sides of the equation.