Skip to main content
Solve for x
Tick mark Image
Solve for y_3
Tick mark Image

Similar Problems from Web Search

Share

3xy_{3}z=10\sqrt{33}
Factor 3300=10^{2}\times 33. Rewrite the square root of the product \sqrt{10^{2}\times 33} as the product of square roots \sqrt{10^{2}}\sqrt{33}. Take the square root of 10^{2}.
3y_{3}zx=10\sqrt{33}
The equation is in standard form.
\frac{3y_{3}zx}{3y_{3}z}=\frac{10\sqrt{33}}{3y_{3}z}
Divide both sides by 3y_{3}z.
x=\frac{10\sqrt{33}}{3y_{3}z}
Dividing by 3y_{3}z undoes the multiplication by 3y_{3}z.
3xy_{3}z=10\sqrt{33}
Factor 3300=10^{2}\times 33. Rewrite the square root of the product \sqrt{10^{2}\times 33} as the product of square roots \sqrt{10^{2}}\sqrt{33}. Take the square root of 10^{2}.
3xzy_{3}=10\sqrt{33}
The equation is in standard form.
\frac{3xzy_{3}}{3xz}=\frac{10\sqrt{33}}{3xz}
Divide both sides by 3xz.
y_{3}=\frac{10\sqrt{33}}{3xz}
Dividing by 3xz undoes the multiplication by 3xz.