Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x\left(x+1\right)^{2}+\left(x+1\right)^{2}\left(-1\right)-\left(x-1\right)=3x\left(x+1\right)^{2}+\left(x+1\right)^{2}\left(-1\right)
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)^{2}.
3x\left(x^{2}+2x+1\right)+\left(x+1\right)^{2}\left(-1\right)-\left(x-1\right)=3x\left(x+1\right)^{2}+\left(x+1\right)^{2}\left(-1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
3x^{3}+6x^{2}+3x+\left(x+1\right)^{2}\left(-1\right)-\left(x-1\right)=3x\left(x+1\right)^{2}+\left(x+1\right)^{2}\left(-1\right)
Use the distributive property to multiply 3x by x^{2}+2x+1.
3x^{3}+6x^{2}+3x+\left(x^{2}+2x+1\right)\left(-1\right)-\left(x-1\right)=3x\left(x+1\right)^{2}+\left(x+1\right)^{2}\left(-1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
3x^{3}+6x^{2}+3x-x^{2}-2x-1-\left(x-1\right)=3x\left(x+1\right)^{2}+\left(x+1\right)^{2}\left(-1\right)
Use the distributive property to multiply x^{2}+2x+1 by -1.
3x^{3}+5x^{2}+3x-2x-1-\left(x-1\right)=3x\left(x+1\right)^{2}+\left(x+1\right)^{2}\left(-1\right)
Combine 6x^{2} and -x^{2} to get 5x^{2}.
3x^{3}+5x^{2}+x-1-\left(x-1\right)=3x\left(x+1\right)^{2}+\left(x+1\right)^{2}\left(-1\right)
Combine 3x and -2x to get x.
3x^{3}+5x^{2}+x-1-x+1=3x\left(x+1\right)^{2}+\left(x+1\right)^{2}\left(-1\right)
To find the opposite of x-1, find the opposite of each term.
3x^{3}+5x^{2}-1+1=3x\left(x+1\right)^{2}+\left(x+1\right)^{2}\left(-1\right)
Combine x and -x to get 0.
3x^{3}+5x^{2}=3x\left(x+1\right)^{2}+\left(x+1\right)^{2}\left(-1\right)
Add -1 and 1 to get 0.
3x^{3}+5x^{2}=3x\left(x^{2}+2x+1\right)+\left(x+1\right)^{2}\left(-1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
3x^{3}+5x^{2}=3x^{3}+6x^{2}+3x+\left(x+1\right)^{2}\left(-1\right)
Use the distributive property to multiply 3x by x^{2}+2x+1.
3x^{3}+5x^{2}=3x^{3}+6x^{2}+3x+\left(x^{2}+2x+1\right)\left(-1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
3x^{3}+5x^{2}=3x^{3}+6x^{2}+3x-x^{2}-2x-1
Use the distributive property to multiply x^{2}+2x+1 by -1.
3x^{3}+5x^{2}=3x^{3}+5x^{2}+3x-2x-1
Combine 6x^{2} and -x^{2} to get 5x^{2}.
3x^{3}+5x^{2}=3x^{3}+5x^{2}+x-1
Combine 3x and -2x to get x.
3x^{3}+5x^{2}-3x^{3}=5x^{2}+x-1
Subtract 3x^{3} from both sides.
5x^{2}=5x^{2}+x-1
Combine 3x^{3} and -3x^{3} to get 0.
5x^{2}-5x^{2}=x-1
Subtract 5x^{2} from both sides.
0=x-1
Combine 5x^{2} and -5x^{2} to get 0.
x-1=0
Swap sides so that all variable terms are on the left hand side.
x=1
Add 1 to both sides. Anything plus zero gives itself.