Solve for V
\left\{\begin{matrix}V=-\frac{z}{-3x+8y-6}\text{, }&z\neq 0\text{ and }x\neq \frac{8y}{3}-2\\V\neq 0\text{, }&x=\frac{8y}{3}-2\text{ and }z=0\end{matrix}\right.
Solve for x
x=\frac{8y}{3}+\frac{z}{3V}-2
V\neq 0
Share
Copied to clipboard
3xV+V\times 6-8yV=z
Variable V cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by V.
\left(3x+6-8y\right)V=z
Combine all terms containing V.
\left(3x-8y+6\right)V=z
The equation is in standard form.
\frac{\left(3x-8y+6\right)V}{3x-8y+6}=\frac{z}{3x-8y+6}
Divide both sides by 3x+6-8y.
V=\frac{z}{3x-8y+6}
Dividing by 3x+6-8y undoes the multiplication by 3x+6-8y.
V=\frac{z}{3x-8y+6}\text{, }V\neq 0
Variable V cannot be equal to 0.
3xV+V\times 6-8yV=z
Multiply both sides of the equation by V.
3xV-8yV=z-V\times 6
Subtract V\times 6 from both sides.
3xV=z-V\times 6+8yV
Add 8yV to both sides.
3xV=z-6V+8yV
Multiply -1 and 6 to get -6.
3Vx=8Vy+z-6V
The equation is in standard form.
\frac{3Vx}{3V}=\frac{8Vy+z-6V}{3V}
Divide both sides by 3V.
x=\frac{8Vy+z-6V}{3V}
Dividing by 3V undoes the multiplication by 3V.
x=\frac{8y}{3}+\frac{z}{3V}-2
Divide z-6V+8Vy by 3V.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}