Solve for x
x=-\frac{1}{3}\approx -0.333333333
Graph
Share
Copied to clipboard
\left(3x+6\right)^{2}=\left(\sqrt{22-9x}\right)^{2}
Square both sides of the equation.
9x^{2}+36x+36=\left(\sqrt{22-9x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+6\right)^{2}.
9x^{2}+36x+36=22-9x
Calculate \sqrt{22-9x} to the power of 2 and get 22-9x.
9x^{2}+36x+36-22=-9x
Subtract 22 from both sides.
9x^{2}+36x+14=-9x
Subtract 22 from 36 to get 14.
9x^{2}+36x+14+9x=0
Add 9x to both sides.
9x^{2}+45x+14=0
Combine 36x and 9x to get 45x.
a+b=45 ab=9\times 14=126
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 9x^{2}+ax+bx+14. To find a and b, set up a system to be solved.
1,126 2,63 3,42 6,21 7,18 9,14
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 126.
1+126=127 2+63=65 3+42=45 6+21=27 7+18=25 9+14=23
Calculate the sum for each pair.
a=3 b=42
The solution is the pair that gives sum 45.
\left(9x^{2}+3x\right)+\left(42x+14\right)
Rewrite 9x^{2}+45x+14 as \left(9x^{2}+3x\right)+\left(42x+14\right).
3x\left(3x+1\right)+14\left(3x+1\right)
Factor out 3x in the first and 14 in the second group.
\left(3x+1\right)\left(3x+14\right)
Factor out common term 3x+1 by using distributive property.
x=-\frac{1}{3} x=-\frac{14}{3}
To find equation solutions, solve 3x+1=0 and 3x+14=0.
3\left(-\frac{1}{3}\right)+6=\sqrt{22-9\left(-\frac{1}{3}\right)}
Substitute -\frac{1}{3} for x in the equation 3x+6=\sqrt{22-9x}.
5=5
Simplify. The value x=-\frac{1}{3} satisfies the equation.
3\left(-\frac{14}{3}\right)+6=\sqrt{22-9\left(-\frac{14}{3}\right)}
Substitute -\frac{14}{3} for x in the equation 3x+6=\sqrt{22-9x}.
-8=8
Simplify. The value x=-\frac{14}{3} does not satisfy the equation because the left and the right hand side have opposite signs.
x=-\frac{1}{3}
Equation 3x+6=\sqrt{22-9x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}