Solve for x
x=2
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Graph
Share
Copied to clipboard
6x^{2}-15x-7\left(x+3\right)=-41
Use the distributive property to multiply 3x by 2x-5.
6x^{2}-15x-7x-21=-41
Use the distributive property to multiply -7 by x+3.
6x^{2}-22x-21=-41
Combine -15x and -7x to get -22x.
6x^{2}-22x-21+41=0
Add 41 to both sides.
6x^{2}-22x+20=0
Add -21 and 41 to get 20.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\times 6\times 20}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -22 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-22\right)±\sqrt{484-4\times 6\times 20}}{2\times 6}
Square -22.
x=\frac{-\left(-22\right)±\sqrt{484-24\times 20}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-22\right)±\sqrt{484-480}}{2\times 6}
Multiply -24 times 20.
x=\frac{-\left(-22\right)±\sqrt{4}}{2\times 6}
Add 484 to -480.
x=\frac{-\left(-22\right)±2}{2\times 6}
Take the square root of 4.
x=\frac{22±2}{2\times 6}
The opposite of -22 is 22.
x=\frac{22±2}{12}
Multiply 2 times 6.
x=\frac{24}{12}
Now solve the equation x=\frac{22±2}{12} when ± is plus. Add 22 to 2.
x=2
Divide 24 by 12.
x=\frac{20}{12}
Now solve the equation x=\frac{22±2}{12} when ± is minus. Subtract 2 from 22.
x=\frac{5}{3}
Reduce the fraction \frac{20}{12} to lowest terms by extracting and canceling out 4.
x=2 x=\frac{5}{3}
The equation is now solved.
6x^{2}-15x-7\left(x+3\right)=-41
Use the distributive property to multiply 3x by 2x-5.
6x^{2}-15x-7x-21=-41
Use the distributive property to multiply -7 by x+3.
6x^{2}-22x-21=-41
Combine -15x and -7x to get -22x.
6x^{2}-22x=-41+21
Add 21 to both sides.
6x^{2}-22x=-20
Add -41 and 21 to get -20.
\frac{6x^{2}-22x}{6}=-\frac{20}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{22}{6}\right)x=-\frac{20}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{11}{3}x=-\frac{20}{6}
Reduce the fraction \frac{-22}{6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{11}{3}x=-\frac{10}{3}
Reduce the fraction \frac{-20}{6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{11}{3}x+\left(-\frac{11}{6}\right)^{2}=-\frac{10}{3}+\left(-\frac{11}{6}\right)^{2}
Divide -\frac{11}{3}, the coefficient of the x term, by 2 to get -\frac{11}{6}. Then add the square of -\frac{11}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{3}x+\frac{121}{36}=-\frac{10}{3}+\frac{121}{36}
Square -\frac{11}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{3}x+\frac{121}{36}=\frac{1}{36}
Add -\frac{10}{3} to \frac{121}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{6}\right)^{2}=\frac{1}{36}
Factor x^{2}-\frac{11}{3}x+\frac{121}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
Take the square root of both sides of the equation.
x-\frac{11}{6}=\frac{1}{6} x-\frac{11}{6}=-\frac{1}{6}
Simplify.
x=2 x=\frac{5}{3}
Add \frac{11}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}