Solve for x
x=48
x=20
Graph
Share
Copied to clipboard
\left(3x\right)^{2}=\left(2\sqrt{\left(x+16\right)\left(2x-15\right)}\right)^{2}
Square both sides of the equation.
3^{2}x^{2}=\left(2\sqrt{\left(x+16\right)\left(2x-15\right)}\right)^{2}
Expand \left(3x\right)^{2}.
9x^{2}=\left(2\sqrt{\left(x+16\right)\left(2x-15\right)}\right)^{2}
Calculate 3 to the power of 2 and get 9.
9x^{2}=\left(2\sqrt{2x^{2}+17x-240}\right)^{2}
Use the distributive property to multiply x+16 by 2x-15 and combine like terms.
9x^{2}=2^{2}\left(\sqrt{2x^{2}+17x-240}\right)^{2}
Expand \left(2\sqrt{2x^{2}+17x-240}\right)^{2}.
9x^{2}=4\left(\sqrt{2x^{2}+17x-240}\right)^{2}
Calculate 2 to the power of 2 and get 4.
9x^{2}=4\left(2x^{2}+17x-240\right)
Calculate \sqrt{2x^{2}+17x-240} to the power of 2 and get 2x^{2}+17x-240.
9x^{2}=8x^{2}+68x-960
Use the distributive property to multiply 4 by 2x^{2}+17x-240.
9x^{2}-8x^{2}=68x-960
Subtract 8x^{2} from both sides.
x^{2}=68x-960
Combine 9x^{2} and -8x^{2} to get x^{2}.
x^{2}-68x=-960
Subtract 68x from both sides.
x^{2}-68x+960=0
Add 960 to both sides.
a+b=-68 ab=960
To solve the equation, factor x^{2}-68x+960 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-960 -2,-480 -3,-320 -4,-240 -5,-192 -6,-160 -8,-120 -10,-96 -12,-80 -15,-64 -16,-60 -20,-48 -24,-40 -30,-32
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 960.
-1-960=-961 -2-480=-482 -3-320=-323 -4-240=-244 -5-192=-197 -6-160=-166 -8-120=-128 -10-96=-106 -12-80=-92 -15-64=-79 -16-60=-76 -20-48=-68 -24-40=-64 -30-32=-62
Calculate the sum for each pair.
a=-48 b=-20
The solution is the pair that gives sum -68.
\left(x-48\right)\left(x-20\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=48 x=20
To find equation solutions, solve x-48=0 and x-20=0.
3\times 48=2\sqrt{\left(48+16\right)\left(2\times 48-15\right)}
Substitute 48 for x in the equation 3x=2\sqrt{\left(x+16\right)\left(2x-15\right)}.
144=144
Simplify. The value x=48 satisfies the equation.
3\times 20=2\sqrt{\left(20+16\right)\left(2\times 20-15\right)}
Substitute 20 for x in the equation 3x=2\sqrt{\left(x+16\right)\left(2x-15\right)}.
60=60
Simplify. The value x=20 satisfies the equation.
x=48 x=20
List all solutions of 3x=2\sqrt{\left(2x-15\right)\left(x+16\right)}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}