Solve for P (complex solution)
\left\{\begin{matrix}\\P=\frac{5R}{3}\text{, }&\text{unconditionally}\\P\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Solve for R (complex solution)
\left\{\begin{matrix}\\R=\frac{3P}{5}\text{, }&\text{unconditionally}\\R\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Solve for P
\left\{\begin{matrix}\\P=\frac{5R}{3}\text{, }&\text{unconditionally}\\P\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for R
\left\{\begin{matrix}\\R=\frac{3P}{5}\text{, }&\text{unconditionally}\\R\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
3xP=5Rx
The equation is in standard form.
\frac{3xP}{3x}=\frac{5Rx}{3x}
Divide both sides by 3x.
P=\frac{5Rx}{3x}
Dividing by 3x undoes the multiplication by 3x.
P=\frac{5R}{3}
Divide 5Rx by 3x.
5Rx=3Px
Swap sides so that all variable terms are on the left hand side.
5xR=3Px
The equation is in standard form.
\frac{5xR}{5x}=\frac{3Px}{5x}
Divide both sides by 5x.
R=\frac{3Px}{5x}
Dividing by 5x undoes the multiplication by 5x.
R=\frac{3P}{5}
Divide 3Px by 5x.
3xP=5Rx
The equation is in standard form.
\frac{3xP}{3x}=\frac{5Rx}{3x}
Divide both sides by 3x.
P=\frac{5Rx}{3x}
Dividing by 3x undoes the multiplication by 3x.
P=\frac{5R}{3}
Divide 5Rx by 3x.
5Rx=3Px
Swap sides so that all variable terms are on the left hand side.
5xR=3Px
The equation is in standard form.
\frac{5xR}{5x}=\frac{3Px}{5x}
Divide both sides by 5x.
R=\frac{3Px}{5x}
Dividing by 5x undoes the multiplication by 5x.
R=\frac{3P}{5}
Divide 3Px by 5x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}