Evaluate
\frac{199975003}{14994}\approx 13337.001667334
Factor
\frac{1103 \cdot 181301}{2 \cdot 3 ^ {2} \cdot 7 ^ {2} \cdot 17} = 13337\frac{25}{14994} = 13337.0016673336
Share
Copied to clipboard
\begin{array}{l}\phantom{29988)}\phantom{1}\\29988\overline{)399950006}\\\end{array}
Use the 1^{st} digit 3 from dividend 399950006
\begin{array}{l}\phantom{29988)}0\phantom{2}\\29988\overline{)399950006}\\\end{array}
Since 3 is less than 29988, use the next digit 9 from dividend 399950006 and add 0 to the quotient
\begin{array}{l}\phantom{29988)}0\phantom{3}\\29988\overline{)399950006}\\\end{array}
Use the 2^{nd} digit 9 from dividend 399950006
\begin{array}{l}\phantom{29988)}00\phantom{4}\\29988\overline{)399950006}\\\end{array}
Since 39 is less than 29988, use the next digit 9 from dividend 399950006 and add 0 to the quotient
\begin{array}{l}\phantom{29988)}00\phantom{5}\\29988\overline{)399950006}\\\end{array}
Use the 3^{rd} digit 9 from dividend 399950006
\begin{array}{l}\phantom{29988)}000\phantom{6}\\29988\overline{)399950006}\\\end{array}
Since 399 is less than 29988, use the next digit 9 from dividend 399950006 and add 0 to the quotient
\begin{array}{l}\phantom{29988)}000\phantom{7}\\29988\overline{)399950006}\\\end{array}
Use the 4^{th} digit 9 from dividend 399950006
\begin{array}{l}\phantom{29988)}0000\phantom{8}\\29988\overline{)399950006}\\\end{array}
Since 3999 is less than 29988, use the next digit 5 from dividend 399950006 and add 0 to the quotient
\begin{array}{l}\phantom{29988)}0000\phantom{9}\\29988\overline{)399950006}\\\end{array}
Use the 5^{th} digit 5 from dividend 399950006
\begin{array}{l}\phantom{29988)}00001\phantom{10}\\29988\overline{)399950006}\\\phantom{29988)}\underline{\phantom{}29988\phantom{9999}}\\\phantom{29988)}10007\\\end{array}
Find closest multiple of 29988 to 39995. We see that 1 \times 29988 = 29988 is the nearest. Now subtract 29988 from 39995 to get reminder 10007. Add 1 to quotient.
\begin{array}{l}\phantom{29988)}00001\phantom{11}\\29988\overline{)399950006}\\\phantom{29988)}\underline{\phantom{}29988\phantom{9999}}\\\phantom{29988)}100070\\\end{array}
Use the 6^{th} digit 0 from dividend 399950006
\begin{array}{l}\phantom{29988)}000013\phantom{12}\\29988\overline{)399950006}\\\phantom{29988)}\underline{\phantom{}29988\phantom{9999}}\\\phantom{29988)}100070\\\phantom{29988)}\underline{\phantom{9}89964\phantom{999}}\\\phantom{29988)9}10106\\\end{array}
Find closest multiple of 29988 to 100070. We see that 3 \times 29988 = 89964 is the nearest. Now subtract 89964 from 100070 to get reminder 10106. Add 3 to quotient.
\begin{array}{l}\phantom{29988)}000013\phantom{13}\\29988\overline{)399950006}\\\phantom{29988)}\underline{\phantom{}29988\phantom{9999}}\\\phantom{29988)}100070\\\phantom{29988)}\underline{\phantom{9}89964\phantom{999}}\\\phantom{29988)9}101060\\\end{array}
Use the 7^{th} digit 0 from dividend 399950006
\begin{array}{l}\phantom{29988)}0000133\phantom{14}\\29988\overline{)399950006}\\\phantom{29988)}\underline{\phantom{}29988\phantom{9999}}\\\phantom{29988)}100070\\\phantom{29988)}\underline{\phantom{9}89964\phantom{999}}\\\phantom{29988)9}101060\\\phantom{29988)}\underline{\phantom{99}89964\phantom{99}}\\\phantom{29988)99}11096\\\end{array}
Find closest multiple of 29988 to 101060. We see that 3 \times 29988 = 89964 is the nearest. Now subtract 89964 from 101060 to get reminder 11096. Add 3 to quotient.
\begin{array}{l}\phantom{29988)}0000133\phantom{15}\\29988\overline{)399950006}\\\phantom{29988)}\underline{\phantom{}29988\phantom{9999}}\\\phantom{29988)}100070\\\phantom{29988)}\underline{\phantom{9}89964\phantom{999}}\\\phantom{29988)9}101060\\\phantom{29988)}\underline{\phantom{99}89964\phantom{99}}\\\phantom{29988)99}110960\\\end{array}
Use the 8^{th} digit 0 from dividend 399950006
\begin{array}{l}\phantom{29988)}00001333\phantom{16}\\29988\overline{)399950006}\\\phantom{29988)}\underline{\phantom{}29988\phantom{9999}}\\\phantom{29988)}100070\\\phantom{29988)}\underline{\phantom{9}89964\phantom{999}}\\\phantom{29988)9}101060\\\phantom{29988)}\underline{\phantom{99}89964\phantom{99}}\\\phantom{29988)99}110960\\\phantom{29988)}\underline{\phantom{999}89964\phantom{9}}\\\phantom{29988)999}20996\\\end{array}
Find closest multiple of 29988 to 110960. We see that 3 \times 29988 = 89964 is the nearest. Now subtract 89964 from 110960 to get reminder 20996. Add 3 to quotient.
\begin{array}{l}\phantom{29988)}00001333\phantom{17}\\29988\overline{)399950006}\\\phantom{29988)}\underline{\phantom{}29988\phantom{9999}}\\\phantom{29988)}100070\\\phantom{29988)}\underline{\phantom{9}89964\phantom{999}}\\\phantom{29988)9}101060\\\phantom{29988)}\underline{\phantom{99}89964\phantom{99}}\\\phantom{29988)99}110960\\\phantom{29988)}\underline{\phantom{999}89964\phantom{9}}\\\phantom{29988)999}209966\\\end{array}
Use the 9^{th} digit 6 from dividend 399950006
\begin{array}{l}\phantom{29988)}000013337\phantom{18}\\29988\overline{)399950006}\\\phantom{29988)}\underline{\phantom{}29988\phantom{9999}}\\\phantom{29988)}100070\\\phantom{29988)}\underline{\phantom{9}89964\phantom{999}}\\\phantom{29988)9}101060\\\phantom{29988)}\underline{\phantom{99}89964\phantom{99}}\\\phantom{29988)99}110960\\\phantom{29988)}\underline{\phantom{999}89964\phantom{9}}\\\phantom{29988)999}209966\\\phantom{29988)}\underline{\phantom{999}209916\phantom{}}\\\phantom{29988)9999999}50\\\end{array}
Find closest multiple of 29988 to 209966. We see that 7 \times 29988 = 209916 is the nearest. Now subtract 209916 from 209966 to get reminder 50. Add 7 to quotient.
\text{Quotient: }13337 \text{Reminder: }50
Since 50 is less than 29988, stop the division. The reminder is 50. The topmost line 000013337 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 13337.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}