Evaluate
\frac{133}{29}\approx 4.586206897
Factor
\frac{7 \cdot 19}{29} = 4\frac{17}{29} = 4.586206896551724
Share
Copied to clipboard
\begin{array}{l}\phantom{87)}\phantom{1}\\87\overline{)399}\\\end{array}
Use the 1^{st} digit 3 from dividend 399
\begin{array}{l}\phantom{87)}0\phantom{2}\\87\overline{)399}\\\end{array}
Since 3 is less than 87, use the next digit 9 from dividend 399 and add 0 to the quotient
\begin{array}{l}\phantom{87)}0\phantom{3}\\87\overline{)399}\\\end{array}
Use the 2^{nd} digit 9 from dividend 399
\begin{array}{l}\phantom{87)}00\phantom{4}\\87\overline{)399}\\\end{array}
Since 39 is less than 87, use the next digit 9 from dividend 399 and add 0 to the quotient
\begin{array}{l}\phantom{87)}00\phantom{5}\\87\overline{)399}\\\end{array}
Use the 3^{rd} digit 9 from dividend 399
\begin{array}{l}\phantom{87)}004\phantom{6}\\87\overline{)399}\\\phantom{87)}\underline{\phantom{}348\phantom{}}\\\phantom{87)9}51\\\end{array}
Find closest multiple of 87 to 399. We see that 4 \times 87 = 348 is the nearest. Now subtract 348 from 399 to get reminder 51. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }51
Since 51 is less than 87, stop the division. The reminder is 51. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}