Evaluate
\frac{133}{8}=16.625
Factor
\frac{7 \cdot 19}{2 ^ {3}} = 16\frac{5}{8} = 16.625
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)399}\\\end{array}
Use the 1^{st} digit 3 from dividend 399
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)399}\\\end{array}
Since 3 is less than 24, use the next digit 9 from dividend 399 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)399}\\\end{array}
Use the 2^{nd} digit 9 from dividend 399
\begin{array}{l}\phantom{24)}01\phantom{4}\\24\overline{)399}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}15\\\end{array}
Find closest multiple of 24 to 39. We see that 1 \times 24 = 24 is the nearest. Now subtract 24 from 39 to get reminder 15. Add 1 to quotient.
\begin{array}{l}\phantom{24)}01\phantom{5}\\24\overline{)399}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}159\\\end{array}
Use the 3^{rd} digit 9 from dividend 399
\begin{array}{l}\phantom{24)}016\phantom{6}\\24\overline{)399}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}159\\\phantom{24)}\underline{\phantom{}144\phantom{}}\\\phantom{24)9}15\\\end{array}
Find closest multiple of 24 to 159. We see that 6 \times 24 = 144 is the nearest. Now subtract 144 from 159 to get reminder 15. Add 6 to quotient.
\text{Quotient: }16 \text{Reminder: }15
Since 15 is less than 24, stop the division. The reminder is 15. The topmost line 016 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}