Evaluate
\frac{391}{64}=6.109375
Factor
\frac{17 \cdot 23}{2 ^ {6}} = 6\frac{7}{64} = 6.109375
Share
Copied to clipboard
\begin{array}{l}\phantom{64)}\phantom{1}\\64\overline{)391}\\\end{array}
Use the 1^{st} digit 3 from dividend 391
\begin{array}{l}\phantom{64)}0\phantom{2}\\64\overline{)391}\\\end{array}
Since 3 is less than 64, use the next digit 9 from dividend 391 and add 0 to the quotient
\begin{array}{l}\phantom{64)}0\phantom{3}\\64\overline{)391}\\\end{array}
Use the 2^{nd} digit 9 from dividend 391
\begin{array}{l}\phantom{64)}00\phantom{4}\\64\overline{)391}\\\end{array}
Since 39 is less than 64, use the next digit 1 from dividend 391 and add 0 to the quotient
\begin{array}{l}\phantom{64)}00\phantom{5}\\64\overline{)391}\\\end{array}
Use the 3^{rd} digit 1 from dividend 391
\begin{array}{l}\phantom{64)}006\phantom{6}\\64\overline{)391}\\\phantom{64)}\underline{\phantom{}384\phantom{}}\\\phantom{64)99}7\\\end{array}
Find closest multiple of 64 to 391. We see that 6 \times 64 = 384 is the nearest. Now subtract 384 from 391 to get reminder 7. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }7
Since 7 is less than 64, stop the division. The reminder is 7. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}