Solve for d
d=\frac{16}{33}\approx 0.484848485
Share
Copied to clipboard
780=10\times 30+30\left(34-1\right)d
Multiply both sides of the equation by 2.
780=300+30\left(34-1\right)d
Multiply 10 and 30 to get 300.
780=300+30\times 33d
Subtract 1 from 34 to get 33.
780=300+990d
Multiply 30 and 33 to get 990.
300+990d=780
Swap sides so that all variable terms are on the left hand side.
990d=780-300
Subtract 300 from both sides.
990d=480
Subtract 300 from 780 to get 480.
d=\frac{480}{990}
Divide both sides by 990.
d=\frac{16}{33}
Reduce the fraction \frac{480}{990} to lowest terms by extracting and canceling out 30.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}