Evaluate
\frac{19455}{119}\approx 163.487394958
Factor
\frac{3 \cdot 5 \cdot 1297}{7 \cdot 17} = 163\frac{58}{119} = 163.48739495798318
Share
Copied to clipboard
\begin{array}{l}\phantom{238)}\phantom{1}\\238\overline{)38910}\\\end{array}
Use the 1^{st} digit 3 from dividend 38910
\begin{array}{l}\phantom{238)}0\phantom{2}\\238\overline{)38910}\\\end{array}
Since 3 is less than 238, use the next digit 8 from dividend 38910 and add 0 to the quotient
\begin{array}{l}\phantom{238)}0\phantom{3}\\238\overline{)38910}\\\end{array}
Use the 2^{nd} digit 8 from dividend 38910
\begin{array}{l}\phantom{238)}00\phantom{4}\\238\overline{)38910}\\\end{array}
Since 38 is less than 238, use the next digit 9 from dividend 38910 and add 0 to the quotient
\begin{array}{l}\phantom{238)}00\phantom{5}\\238\overline{)38910}\\\end{array}
Use the 3^{rd} digit 9 from dividend 38910
\begin{array}{l}\phantom{238)}001\phantom{6}\\238\overline{)38910}\\\phantom{238)}\underline{\phantom{}238\phantom{99}}\\\phantom{238)}151\\\end{array}
Find closest multiple of 238 to 389. We see that 1 \times 238 = 238 is the nearest. Now subtract 238 from 389 to get reminder 151. Add 1 to quotient.
\begin{array}{l}\phantom{238)}001\phantom{7}\\238\overline{)38910}\\\phantom{238)}\underline{\phantom{}238\phantom{99}}\\\phantom{238)}1511\\\end{array}
Use the 4^{th} digit 1 from dividend 38910
\begin{array}{l}\phantom{238)}0016\phantom{8}\\238\overline{)38910}\\\phantom{238)}\underline{\phantom{}238\phantom{99}}\\\phantom{238)}1511\\\phantom{238)}\underline{\phantom{}1428\phantom{9}}\\\phantom{238)99}83\\\end{array}
Find closest multiple of 238 to 1511. We see that 6 \times 238 = 1428 is the nearest. Now subtract 1428 from 1511 to get reminder 83. Add 6 to quotient.
\begin{array}{l}\phantom{238)}0016\phantom{9}\\238\overline{)38910}\\\phantom{238)}\underline{\phantom{}238\phantom{99}}\\\phantom{238)}1511\\\phantom{238)}\underline{\phantom{}1428\phantom{9}}\\\phantom{238)99}830\\\end{array}
Use the 5^{th} digit 0 from dividend 38910
\begin{array}{l}\phantom{238)}00163\phantom{10}\\238\overline{)38910}\\\phantom{238)}\underline{\phantom{}238\phantom{99}}\\\phantom{238)}1511\\\phantom{238)}\underline{\phantom{}1428\phantom{9}}\\\phantom{238)99}830\\\phantom{238)}\underline{\phantom{99}714\phantom{}}\\\phantom{238)99}116\\\end{array}
Find closest multiple of 238 to 830. We see that 3 \times 238 = 714 is the nearest. Now subtract 714 from 830 to get reminder 116. Add 3 to quotient.
\text{Quotient: }163 \text{Reminder: }116
Since 116 is less than 238, stop the division. The reminder is 116. The topmost line 00163 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 163.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}